Fast parallel solution of fully implicit Runge-Kutta and discontinuous Galerkin in time for numerical PDEs, Part I: the linear setting

Fully implicit Runge-Kutta (IRK) methods have many desirable properties as time integration schemes in terms of accuracy and stability, but are rarely used in practice with numerical PDEs due to the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic framework for the fast, parallel solution of the systems of equations that arise from IRK methods applied to linear numerical PDEs (without algebraic constraints). This framework also naturally applies to discontinuous Galerkin discretizations in time. The new method can be used with arbitrary existing preconditioners for backward Euler-type time stepping schemes, and is amenable to the use of three-term recursion Krylov methods when the underlying spatial discretization is symmetric. Under quite general assumptions on the spatial discretization that yield stable time integration, the preconditioned operator is proven to have conditioning ∼ O(1), with only weak dependence on number of stages/polynomial order; for example, the preconditioned operator for 10th-order Gauss integration has condition number less than two. The new method is demonstrated to be effective on various high-order finite-difference and finite-element discretizations of linear parabolic and hyperbolic problems, demonstrating fast, scalable solution of up to 10th order accuracy. In several cases, the new method can achieve 4th-order accuracy using Gauss integration with roughly half the number of preconditioner applications as required using standard SDIRK techniques. ∗BSS was supported by Lawrence Livermore National Laboratory under contract B639443, and as a Nicholas C. Metropolis Fellow under the Laboratory Directed Research and Development program of Los Alamos National Laboratory. OAK acknowledges the support of an Australian Government Research Training Program (RTP) Scholarship. †Theoretical Division, Los Alamos National Laboratory, U.S.A. (southworth@lanl.gov), http:// orcid.org/0000-0002-0283-4928 ‡School of Mathematics, Monash University, Australia (oliver.krzysik@monash.edu), https:// orcid.org/0000-0001-7880-6512 §Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, U.S.A. (pazner1@llnl.gov) ¶Department of Applied Mathematics, University of Waterloo, Waterloo, Canada (hdesterck@ uwaterloo.ca) 1 ar X iv :2 10 1. 00 51 2v 2 [ m at h. N A ] 7 J an 2 02 1

[1]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[2]  John C. Butcher,et al.  On the implementation of implicit Runge-Kutta methods , 1976 .

[3]  Syvert P. Nørsett,et al.  Runge-Kutta methods with a multiple real eigenvalue only , 1976 .

[4]  Theodore A. Bickart,et al.  An Efficient Solution Process for Implicit Runge–Kutta Methods , 1977 .

[5]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[6]  Kevin Burrage,et al.  Efficiently Implementable Algebraically Stable Runge–Kutta Methods , 1982 .

[7]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[8]  Bojan Orel,et al.  Real pole approximations to the exponential function , 1991 .

[9]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[10]  William C. Brown,et al.  Matrices over commutative rings , 1993 .

[11]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[12]  W. Hoffmann,et al.  Approximating Runge-Kutta matrices by triangular matrices , 1995 .

[13]  Ernst Hairer,et al.  Implementation of Implicit Runge-Kutta Methods , 1996 .

[14]  Piet J. van der Houwen,et al.  Parallel linear system solvers for Runge-Kutta methods , 1997, Adv. Comput. Math..

[15]  Piet J. van der Houwen,et al.  Triangularly Implicit Iteration Methods for ODE-IVP Solvers , 1997, SIAM J. Sci. Comput..

[16]  Y. Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[17]  John C. Butcher,et al.  A new type of singly-implicit Runge-Kutta method , 2000 .

[18]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[19]  Laurent O. Jay,et al.  Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..

[20]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[21]  Jens Markus Melenk,et al.  Fully discrete hp-finite elements: fast quadrature , 2001 .

[22]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[23]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[24]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  Stefan Vandewalle,et al.  Multigrid Methods for Implicit Runge-Kutta and Boundary Value Method Discretizations of Parabolic PDEs , 2005, SIAM J. Sci. Comput..

[26]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[27]  Trygve K. Nilssen,et al.  Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs , 2006 .

[28]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[29]  Kent-André Mardal,et al.  Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..

[30]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[31]  Claudio Canuto,et al.  Finite-Element Preconditioning of G-NI Spectral Methods , 2009, SIAM J. Sci. Comput..

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[33]  Trygve K. Nilssen,et al.  Order optimal preconditioners for fully implicit Runge‐Kutta schemes applied to the bidomain equations , 2011 .

[34]  Ricardo H. Nochetto,et al.  Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence , 2011, Numerische Mathematik.

[35]  Jorg Liesen,et al.  The field of values bound on ideal GMRES , 2012, 1211.5969.

[36]  Thomas Richter,et al.  Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems , 2013, Numerische Mathematik.

[37]  Hao Chen,et al.  A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .

[38]  Iain Smears,et al.  Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method , 2016, 1608.08184.

[39]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[40]  Christopher A. Kennedy,et al.  Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review , 2016 .

[41]  Hao Chen Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations , 2016 .

[42]  Eberhard Bänsch,et al.  Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order , 2017 .

[43]  Per-Olof Persson,et al.  Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations , 2017, J. Comput. Phys..

[44]  Thomas A. Manteuffel,et al.  Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (ℓAIR) , 2017, SIAM J. Sci. Comput..

[45]  Thomas A. Manteuffel,et al.  Reduction-based Algebraic Multigrid for Upwind Discretizations , 2017, 1704.05001.

[46]  Martin Kronbichler,et al.  Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors , 2019, ACM Trans. Parallel Comput..

[47]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[48]  Will Pazner,et al.  Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..

[49]  Stefano Zampini,et al.  MFEM: a modular finite element methods library , 2019, Comput. Math. Appl..

[50]  Xiangmin Jiao,et al.  Optimal and Low-Memory Near-Optimal Preconditioning of Fully Implicit Runge-Kutta Schemes for Parabolic PDEs , 2020, SIAM J. Sci. Comput..

[51]  Victoria E. Howle,et al.  A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE , 2020, ArXiv.

[52]  Ben S. Southworth,et al.  Fast parallel solution of fully implicit Runge-Kutta and discontinuous Galerkin in time for numerical PDEs, Part II: nonlinearities and DAEs , 2021, ArXiv.

[53]  Robert C. Kirby,et al.  Irksome: Automating Runge–Kutta Time-stepping for Finite Element Methods , 2020, ACM Trans. Math. Softw..