暂无分享,去创建一个
Hans De Sterck | Ben S. Southworth | Oliver Krzysik | Will Pazner | H. D. Sterck | O. Krzysik | Will Pazner | B. Southworth
[1] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[2] John C. Butcher,et al. On the implementation of implicit Runge-Kutta methods , 1976 .
[3] Syvert P. Nørsett,et al. Runge-Kutta methods with a multiple real eigenvalue only , 1976 .
[4] Theodore A. Bickart,et al. An Efficient Solution Process for Implicit Runge–Kutta Methods , 1977 .
[5] S. Orszag. Spectral methods for problems in complex geometries , 1980 .
[6] Kevin Burrage,et al. Efficiently Implementable Algebraically Stable Runge–Kutta Methods , 1982 .
[7] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[8] Bojan Orel,et al. Real pole approximations to the exponential function , 1991 .
[9] L. Trefethen,et al. Stability of the method of lines , 1992, Spectra and Pseudospectra.
[10] William C. Brown,et al. Matrices over commutative rings , 1993 .
[11] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[12] W. Hoffmann,et al. Approximating Runge-Kutta matrices by triangular matrices , 1995 .
[13] Ernst Hairer,et al. Implementation of Implicit Runge-Kutta Methods , 1996 .
[14] Piet J. van der Houwen,et al. Parallel linear system solvers for Runge-Kutta methods , 1997, Adv. Comput. Math..
[15] Piet J. van der Houwen,et al. Triangularly Implicit Iteration Methods for ODE-IVP Solvers , 1997, SIAM J. Sci. Comput..
[16] Y. Notay. Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..
[17] John C. Butcher,et al. A new type of singly-implicit Runge-Kutta method , 2000 .
[18] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[19] Laurent O. Jay,et al. Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..
[20] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[21] Jens Markus Melenk,et al. Fully discrete hp-finite elements: fast quadrature , 2001 .
[22] Robert D. Falgout,et al. hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.
[23] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[24] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[25] Stefan Vandewalle,et al. Multigrid Methods for Implicit Runge-Kutta and Boundary Value Method Discretizations of Parabolic PDEs , 2005, SIAM J. Sci. Comput..
[26] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[27] Trygve K. Nilssen,et al. Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs , 2006 .
[28] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[29] Kent-André Mardal,et al. Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..
[30] Randall J. LeVeque,et al. Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .
[31] Claudio Canuto,et al. Finite-Element Preconditioning of G-NI Spectral Methods , 2009, SIAM J. Sci. Comput..
[32] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[33] Trygve K. Nilssen,et al. Order optimal preconditioners for fully implicit Runge‐Kutta schemes applied to the bidomain equations , 2011 .
[34] Ricardo H. Nochetto,et al. Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence , 2011, Numerische Mathematik.
[35] Jorg Liesen,et al. The field of values bound on ideal GMRES , 2012, 1211.5969.
[36] Thomas Richter,et al. Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems , 2013, Numerische Mathematik.
[37] Hao Chen,et al. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .
[38] Iain Smears,et al. Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method , 2016, 1608.08184.
[39] Martin J. Gander,et al. Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..
[40] Christopher A. Kennedy,et al. Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review , 2016 .
[41] Hao Chen. Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations , 2016 .
[42] Eberhard Bänsch,et al. Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order , 2017 .
[43] Per-Olof Persson,et al. Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations , 2017, J. Comput. Phys..
[44] Thomas A. Manteuffel,et al. Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (ℓAIR) , 2017, SIAM J. Sci. Comput..
[45] Thomas A. Manteuffel,et al. Reduction-based Algebraic Multigrid for Upwind Discretizations , 2017, 1704.05001.
[46] Martin Kronbichler,et al. Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors , 2019, ACM Trans. Parallel Comput..
[47] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[48] Will Pazner,et al. Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..
[49] Stefano Zampini,et al. MFEM: a modular finite element methods library , 2019, Comput. Math. Appl..
[50] Xiangmin Jiao,et al. Optimal and Low-Memory Near-Optimal Preconditioning of Fully Implicit Runge-Kutta Schemes for Parabolic PDEs , 2020, SIAM J. Sci. Comput..
[51] Victoria E. Howle,et al. A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE , 2020, ArXiv.
[52] Ben S. Southworth,et al. Fast parallel solution of fully implicit Runge-Kutta and discontinuous Galerkin in time for numerical PDEs, Part II: nonlinearities and DAEs , 2021, ArXiv.
[53] Robert C. Kirby,et al. Irksome: Automating Runge–Kutta Time-stepping for Finite Element Methods , 2020, ACM Trans. Math. Softw..