Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques / Modélisation de la charge journalière en matières en suspension dans des rivières turques à l'aide de plusieurs techniques empiriques
暂无分享,去创建一个
[1] T.,et al. Training Feedforward Networks with the Marquardt Algorithm , 2004 .
[2] Özgür Kişi,et al. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation / Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt , 2004 .
[3] A. Turgeon,et al. Fuzzy Learning Decomposition for the Scheduling of Hydroelectric Power Systems , 1996 .
[4] Bellie Sivakumar,et al. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches , 2002 .
[5] Narendra Singh Raghuwanshi,et al. Runoff and Sediment Yield Modeling using Artificial Neural Networks: Upper Siwane River, India , 2006 .
[6] Ozgur Kisi,et al. Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .
[7] Donald F. Specht,et al. A general regression neural network , 1991, IEEE Trans. Neural Networks.
[8] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..
[9] null null,et al. Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .
[10] Kurt Hornik,et al. FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .
[11] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .
[12] Jyh-Shing Roger Jang,et al. ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..
[13] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[14] Mohammad Bagher Menhaj,et al. Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.
[15] D. K. Srivastava,et al. Application of ANN for Reservoir Inflow Prediction and Operation , 1999 .
[16] D. Solomatine,et al. Model trees as an alternative to neural networks in rainfall—runoff modelling , 2003 .
[17] G. Tayfur. Artificial neural networks for sheet sediment transport , 2002 .
[18] H. Raman,et al. Multivariate modelling of water resources time series using artificial neural networks , 1995 .
[19] H. K. Cigizoglu,et al. ESTIMATION AND FORECASTING OF DAILY SUSPENDED SEDIMENT DATA BY MULTI-LAYER PERCEPTRONS , 2004 .
[20] Edward A. McBean,et al. Uncertainty in Suspended Sediment Transport Curves , 1988 .
[21] R. Abrahart,et al. Detection of conceptual model rainfall—runoff processes inside an artificial neural network , 2003 .
[22] Sharad K. Jain,et al. Development of Integrated Sediment Rating Curves Using ANNs , 2001 .
[23] S. Hyakin,et al. Neural Networks: A Comprehensive Foundation , 1994 .
[24] Hikmet Kerem Cigizoglu,et al. Estimation, forecasting and extrapolation of river flows by artificial neural networks , 2003 .
[25] Richard J. Heggen,et al. Neural Networks for River Flow Prediction , 1995 .
[26] John E. Freund,et al. Probability and statistics for engineers , 1965 .
[27] David S. Broomhead,et al. Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..
[28] Ozgur Kisi,et al. Methods to improve the neural network performance in suspended sediment estimation , 2006 .
[29] Slobodan P. Simonovic,et al. Short term streamflow forecasting using artificial neural networks , 1998 .
[30] K. Lam,et al. River flow time series prediction with a range-dependent neural network , 2001 .
[31] Tarek Sayed,et al. Comparison of Adaptive Network Based Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models , 2003 .
[32] Christian W. Dawson,et al. An artificial neural network approach to rainfall-runoff modelling , 1998 .
[33] O. Ks. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation , 2004 .
[34] Soon Heung Chang,et al. Radial basis function networks applied to DNBR calculation in digital core protection systems , 2003 .