Defect engineered bioactive transition metals dichalcogenides quantum dots

[1]  K. Loh,et al.  Precise Single‐Step Electrophoretic Multi‐Sized Fractionation of Liquid‐Exfoliated Nanosheets , 2018 .

[2]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[3]  L. Gu,et al.  Preparation of High‐Percentage 1T‐Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[4]  Liangzhu Feng,et al.  Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. , 2018, Journal of the American Chemical Society.

[5]  O. Farokhzad,et al.  Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. , 2018, ACS nano.

[6]  S. Luo,et al.  MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production. , 2017, ACS nano.

[7]  Wei Zhang,et al.  Influence of self-consistent screening and polarizability contractions on interlayer sliding behavior of hexagonal boron nitride , 2017 .

[8]  Chi Zhang,et al.  One-step synthesis of water-soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose , 2017 .

[9]  Vladimir Bulovic,et al.  Radiative Efficiency Limit with Band Tailing Exceeds 30% for Quantum Dot Solar Cells , 2017 .

[10]  A. Zunger,et al.  Instilling defect tolerance in new compounds. , 2017, Nature materials.

[11]  I. Moreels,et al.  Solution-Processed Hybrid Graphene Flake/2H-MoS2 Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution , 2017, 1805.01550.

[12]  Hong Qun Luo,et al.  Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy. , 2017, Small.

[13]  A. Misra,et al.  pH Dependent Optical Switching and Fluorescence Modulation of Molybdenum Sulfide Quantum Dots , 2017 .

[14]  Katsuhiko Ariga,et al.  Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. , 2017, ACS applied materials & interfaces.

[15]  Jun Lin,et al.  Synthesis and Optimization of MoS2@Fe3O4‐ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser , 2017, Advanced science.

[16]  Tianyi Zhang,et al.  Ultrasensitive Pressure Detection of Few‐Layer MoS2 , 2017, Advanced materials.

[17]  S. Lau,et al.  Mechanistic Understanding of Excitation-Correlated Nonlinear Optical Properties in MoS2 Nanosheets and Nanodots: The Role of Exciton Resonance , 2016 .

[18]  Yayuan Liu,et al.  Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. , 2016, Nature nanotechnology.

[19]  Liming Nie,et al.  Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. , 2016, Chemical Society reviews.

[20]  Jianping Xie,et al.  Low‐Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors , 2016 .

[21]  B. Liu,et al.  Far Red/Near-Infrared AIE Dots for Image-Guided Photodynamic Cancer Cell Ablation. , 2016, ACS applied materials & interfaces.

[22]  Xu Zhen,et al.  Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species. , 2016, ACS nano.

[23]  Cuiling Zhang,et al.  Facile Synthesis of Water-Soluble WS2 Quantum Dots for Turn-On Fluorescent Measurement of Lipoic Acid , 2016 .

[24]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[25]  U. Schepers,et al.  Tin Tungstate Nanoparticles: A Photosensitizer for Photodynamic Tumor Therapy. , 2016, ACS nano.

[26]  Yifan Sun,et al.  Low-Temperature Solution Synthesis of Few-Layer 1T '-MoTe2 Nanostructures Exhibiting Lattice Compression. , 2016, Angewandte Chemie.

[27]  Peng Huang,et al.  Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. , 2016, ACS nano.

[28]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[29]  Liang Yan,et al.  Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. , 2015, ACS nano.

[30]  Deqing Zhang,et al.  Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics† †Electronic supplementary information (ESI) available: Synthesis and characterization of the intermediates and molecular orbital data. See DOI: 10.1039/c5sc , 2015, Chemical science.

[31]  Yong-Wei Zhang,et al.  Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides. , 2015, Journal of the American Chemical Society.

[32]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[33]  Hua Zhang,et al.  A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. , 2015, Angewandte Chemie.

[34]  Chor Yong Tay,et al.  Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. , 2015, Small.

[35]  K. Soo,et al.  Nanoparticles in photodynamic therapy. , 2015, Chemical reviews.

[36]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[37]  Liang Cheng,et al.  Functional nanomaterials for phototherapies of cancer. , 2014, Chemical reviews.

[38]  L. Lauhon,et al.  Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2 , 2014, ACS nano.

[39]  Chun‐Sing Lee,et al.  A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation , 2014, Nature Communications.

[40]  Liang Cheng,et al.  Drug Delivery with PEGylated MoS2 Nano‐sheets for Combined Photothermal and Chemotherapy of Cancer , 2014, Advanced materials.

[41]  Yong-Wei Zhang,et al.  Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. , 2014, Chemical communications.

[42]  C. Fan,et al.  Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. , 2014, Accounts of chemical research.

[43]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[44]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[45]  Liangzhu Feng,et al.  Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. , 2013, Small.

[46]  Bai Yang,et al.  Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. , 2013, Angewandte Chemie.

[47]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[48]  Bai Yang,et al.  Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up‐Conversion Bioimaging Applications , 2012 .

[49]  Kai Yang,et al.  The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. , 2012, Biomaterials.

[50]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[51]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[52]  Byungwoo Park,et al.  Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon , 2011 .

[53]  Michael J Sailor,et al.  Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. , 2011, ACS nano.

[54]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[55]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[56]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[57]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[58]  Smita Dayal,et al.  Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy , 2006, Photochemistry and photobiology.

[59]  P. Chou,et al.  Switching luminescent properties in osmium-based beta-diketonate complexes. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  Zhivko Zhelev,et al.  Quantum dots as photosensitizers? , 2004, Nature Biotechnology.

[61]  L. Pu,et al.  Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals , 2004 .

[62]  Xiaobo Chen,et al.  Semiconductor quantum dots for photodynamic therapy. , 2003, Journal of the American Chemical Society.

[63]  A. Bard,et al.  Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3 by Oxygen Passivation of Surface States , 2003 .

[64]  D. F. Kelley,et al.  Size-Dependent Spectroscopy of MoS2 Nanoclusters , 2002 .

[65]  C. Lenardi,et al.  XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions , 1999 .

[66]  D. F. Kelley,et al.  Trap State Dynamics in MoS2 Nanoclusters , 1998 .

[67]  K. Vijayakumar,et al.  Effect of irradiation-induced disorder on the optical absorption spectra of CdS thin films , 1997 .

[68]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[69]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[70]  N. Periasamy,et al.  Singlet molecular oxygen quantum yield measurements of some porphyrins and metalloporphyrins , 1992, Proceedings / Indian Academy of Sciences.

[71]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .

[72]  N. Kratowich,et al.  THE QUENCHING OF SINGLET OXYGEN BY AMINO ACIDS AND PROTEINS , 1975, Photochemistry and photobiology.