Random walk with memory on complex networks.

We study random walks on complex networks with transition probabilities which depend on the current and previously visited nodes. By using an absorbing Markov chain we derive an exact expression for the mean first passage time between pairs of nodes, for a random walk with a memory of one step. We have analyzed one particular model of random walk, where the transition probabilities depend on the number of paths to the second neighbors. The numerical experiments on paradigmatic complex networks verify the validity of the theoretical expressions, and also indicate that the flattening of the stationary occupation probability accompanies a nearly optimal random search.

[1]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[2]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[3]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[4]  Boleslaw K. Szymanski,et al.  Quantifying patterns of research-interest evolution , 2017, Nature Human Behaviour.

[5]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[6]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[7]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[8]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  A. Fronczak,et al.  Biased random walks in complex networks: the role of local navigation rules. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Olaf Sporns,et al.  A spectrum of routing strategies for brain networks , 2018, PLoS Comput. Biol..

[11]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[12]  Marián Boguñá,et al.  Navigability of Complex Networks , 2007, ArXiv.

[13]  Reuven Cohen,et al.  Search in Complex Networks : a New Method of Naming , 2006, ArXiv.

[14]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[15]  L. Goddard Information Theory , 1962, Nature.

[16]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[18]  Shigeo Shioda Random walk based biased sampling for data collection on communication networks , 2014, PERV.

[19]  Numérisation de documents anciens mathématiques,et al.  Annales scientifiques de ľÉcole Normale Supérieure , 1864 .

[20]  Z. Burda,et al.  Localization of the maximal entropy random walk. , 2008, Physical review letters.

[21]  Vito Latora,et al.  Characteristic times of biased random walks on complex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[23]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Reuven Cohen,et al.  Searching complex networks efficiently with minimal information , 2006 .

[27]  José L. Mateos,et al.  Long-Range Navigation on Complex Networks using Lévy Random Walks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[29]  O. Bénichou,et al.  Global mean first-passage times of random walks on complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.