Identification of Local Elastic Parameters in Heterogeneous Materials Using a Parallelized Femu Method

Abstract In this work, we explore the possibilities of the widespread Finite Element Model Updating method (FEMU) in order to identify the local elastic mechanical properties in heterogeneous materials. The objective function is defined as a quadratic error of the discrepancy between measured fields and simulated ones. We compare two different formulations of the function, one based on the displacement fields and one based on the strain fields. We use a genetic algorithm in order to minimize these functions. We prove that the strain functional associated with the genetic algorithm is the best combination. We then improve the implementation of the method by parallelizing the algorithm in order to reduce the computation cost. We validate the approach with simulated cases in 2D.

[1]  Gilles Lubineau,et al.  A domain decomposition approach for full-field measurements based identification of local elastic parameters , 2015 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  R. Clough,et al.  Finite element applications in the characterization of elastic solids , 1971 .

[4]  Pierre Villon,et al.  Robust identification of elastic properties using the Modified Constitutive Relation Error , 2015 .

[5]  Stéphane Roux,et al.  Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields , 2020, International Journal of Solids and Structures.

[6]  François Hild,et al.  Identification of elastic parameters by displacement field measurement , 2002 .

[7]  Stéphane Roux,et al.  A finite element formulation to identify damage fields: the equilibrium gap method , 2004 .

[8]  Padmavathi Kora,et al.  Crossover Operators in Genetic Algorithms: A Review , 2017 .

[9]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  A. Pirrotta,et al.  Vibration-based identification of mechanical properties of orthotropic arbitrarily shaped plates: Numerical and experimental assessment , 2018, Composites Part B: Engineering.

[12]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[13]  J. Passieux,et al.  Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties , 2015 .

[14]  Frederic Roger,et al.  Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method , 2014 .

[15]  António Andrade-Campos,et al.  Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements , 2018, International Journal of Mechanical Sciences.

[16]  Fabrice Pierron,et al.  A Fourier‐series‐based Virtual Fields Method for the Identification of 2‐D Stiffness and Traction Distributions , 2014 .

[17]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[18]  José A. López-Campos,et al.  A genetic algorithm for the characterization of hyperelastic materials , 2018, Appl. Math. Comput..

[19]  Andrew Makeev,et al.  Uncertainty analysis in composite material properties characterization using digital image correlation and finite element model updating , 2018 .

[20]  Thorsten Stoesser,et al.  Scalability of an Eulerian-Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP parallelisation , 2019, Computers & Fluids.