Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades.

Founder-event speciation, where a rare jump dispersal event founds a new genetically isolated lineage, has long been considered crucial by many historical biogeographers, but its importance is disputed within the vicariance school. Probabilistic modeling of geographic range evolution creates the potential to test different biogeographical models against data using standard statistical model choice procedures, as long as multiple models are available. I re-implement the Dispersal-Extinction-Cladogenesis (DEC) model of LAGRANGE in the R package BioGeoBEARS, and modify it to create a new model, DEC + J, which adds founder-event speciation, the importance of which is governed by a new free parameter, [Formula: see text]. The identifiability of DEC and DEC + J is tested on data sets simulated under a wide range of macroevolutionary models where geography evolves jointly with lineage birth/death events. The results confirm that DEC and DEC + J are identifiable even though these models ignore the fact that molecular phylogenies are missing many cladogenesis and extinction events. The simulations also indicate that DEC will have substantially increased errors in ancestral range estimation and parameter inference when the true model includes + J. DEC and DEC + J are compared on 13 empirical data sets drawn from studies of island clades. Likelihood-ratio tests indicate that all clades reject DEC, and AICc model weights show large to overwhelming support for DEC + J, for the first time verifying the importance of founder-event speciation in island clades via statistical model choice. Under DEC + J, ancestral nodes are usually estimated to have ranges occupying only one island, rather than the widespread ancestors often favored by DEC. These results indicate that the assumptions of historical biogeography models can have large impacts on inference and require testing and comparison with statistical methods.

[1]  R. Fritze The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life , 2016 .

[2]  John C. Nash,et al.  A Replacement and Extension of the optim() Function , 2014 .

[3]  A. Pyron,et al.  Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. , 2014, Systematic biology.

[4]  Nicholas J. Matzke,et al.  BioGeography with Bayesian (and Likelihood) EvolutionaryAnalysis in R Scripts , 2014 .

[5]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[6]  P. O'Grady,et al.  Diversification and dispersal of the Hawaiian Drosophilidae: the evolution of Scaptomyza. , 2013, Molecular phylogenetics and evolution.

[7]  Gordon M. Bennett,et al.  Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne) , 2013 .

[8]  R. B. Sidje,et al.  R wrappers for EXPOKIT; other matrix functions , 2013 .

[9]  H. Spencer,et al.  Biogeography off the tracks. , 2013, Systematic biology.

[10]  N. Wahlberg,et al.  Systematics and evolutionary history of butterflies in the "Taygetis clade" (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of Neotropical biogeography. , 2013, Molecular phylogenetics and evolution.

[11]  P. Midford,et al.  Exploring power and parameter estimation of the BiSSE method for analyzing species diversification , 2013, BMC Evolutionary Biology.

[12]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[13]  E. Goldberg,et al.  TEMPO AND MODE IN PLANT BREEDING SYSTEM EVOLUTION , 2012, Evolution; international journal of organic evolution.

[14]  C. Guyer,et al.  It is time for a new classification of anoles (Squamata: Dactyloidae) , 2012 .

[15]  R. Ree,et al.  Biotic Evolution and Environmental Change in Southeast Asia: Historical biogeography inference in Malesia , 2012 .

[16]  Historical Biogeography: Evolution in Time and Space , 2012, Evolution: Education and Outreach.

[17]  M. Heads Molecular Panbiogeography of the Tropics , 2012 .

[18]  G. Roderick,et al.  Long-distance dispersal: a framework for hypothesis testing. , 2012, Trends in Ecology & Evolution.

[19]  M. Meyer,et al.  Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers , 2011, Current Biology.

[20]  Fredrik Ronquist,et al.  Phylogenetic Methods in Biogeography , 2011 .

[21]  John C. Nash,et al.  Unifying Optimization Algorithms to Aid Software System Users: optimx for R , 2011 .

[22]  Antonio Gasparrini,et al.  Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. , 2011, Journal of statistical software.

[23]  Lesley T Lancaster,et al.  Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. , 2011, Systematic biology.

[24]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[25]  F. Forest,et al.  An evaluation of new parsimony‐based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae , 2011 .

[26]  Marginal Likelihood Computation via Arrogance Sampling , 2011, 1101.1136.

[27]  M. Donoghue,et al.  Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). , 2010, Systematic biology.

[28]  W. L. Wagner,et al.  Patterns of diversification and ancestral range reconstruction in the southeast Asian-Pacific angiosperm lineage Cyrtandra (Gesneriaceae). , 2009, Molecular phylogenetics and evolution.

[29]  William A. Link,et al.  Bayesian Inference: With Ecological Applications , 2009 .

[30]  U. Kodandaramaiah Use of dispersal–vicariance analysis in biogeography – a critique , 2009 .

[31]  R. Ree,et al.  Prospects and challenges for parametric models in historical biogeographical inference , 2009 .

[32]  H. Snell,et al.  Island Biogeography of Galápagos Lava Lizards (Tropiduridae: Microlophus): Species Diversity and Colonization of the Archipelago , 2009, Evolution; international journal of organic evolution.

[33]  B. G. Baldwin,et al.  Island Biogeography of Remote Archipelagoes Interplay between Ecological and Evolutionary Processes , 2009 .

[34]  John R. Clark,et al.  A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. , 2008, Systematic biology.

[35]  Alycia L. Stigall,et al.  Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal , 2008 .

[36]  Alan R Templeton,et al.  The reality and importance of founder speciation in evolution. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[38]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[39]  C. M. D. Santos On basal clades and ancestral areas , 2007 .

[40]  R. Cowie,et al.  Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands , 2006 .

[41]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[42]  A. de Queiroz The resurrection of oceanic dispersal in historical biogeography. , 2005, Trends in ecology & evolution.

[43]  A. Mooers Effects of tree shape on the accuracy of maximum likelihood-based ancestor reconstructions. , 2004, Systematic biology.

[44]  E. Zimmer,et al.  Reconstructing ancestral patterns of colonization and dispersal in the Hawaiian understory tree genus Psychotria (Rubiaceae): a comparison of parsimony and likelihood approaches. , 2003, Systematic biology.

[45]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[46]  G. Hormiga,et al.  Speciation on a conveyor belt: sequential colonization of the hawaiian islands by Orsonwelles spiders (Araneae, Linyphiidae). , 2003, Systematic biology.

[47]  S. Jordan,et al.  Molecular systematics and adaptive radiation of Hawaii's endemic Damselfly genus Megalagrion (Odonata: Coenagrionidae). , 2003, Systematic biology.

[48]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[49]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[50]  C. Meyer,et al.  Diversification in the Tropical Pacific: Comparisons Between Marine and Terrestrial Systems and the Importance of Founder Speciation1 , 2002, Integrative and comparative biology.

[51]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.

[52]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[53]  D. Schluter,et al.  RECONSTRUCTING ANCESTOR STATES WITH MAXIMUM LIKELIHOOD : SUPPORT FOR ONE- AND TWO-RATE MODELS , 1999 .

[54]  M. Sanderson,et al.  Age and rate of diversification of the Hawaiian silversword alliance (Compositae). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[56]  S. Miller,et al.  The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia : patterns and processes , 1997 .

[57]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[58]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[59]  Jacob Cohen,et al.  Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny , 1995, Current Biology.

[60]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[61]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[62]  K. Bremer Ancestral Areas: A Cladistic Reinterpretation of the Center of Origin Concept , 1992 .

[63]  Roy Haines-Young,et al.  Biogeography , 1992, Vegetatio.

[64]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[65]  A. Templeton,et al.  Genetic Revolutions in Relation to Speciation Phenomena: The Founding of New Populations , 1984 .

[66]  J. Felsenstein,et al.  EVOLUTIONARY TREES FROM GENE FREQUENCIES AND QUANTITATIVE CHARACTERS: FINDING MAXIMUM LIKELIHOOD ESTIMATES , 1981, Evolution; international journal of organic evolution.

[67]  E. Wiley Phylogenetics: The Theory and Practice of Phylogenetic Systematics , 1981 .

[68]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .