Processing of horizontal optic flow in three visual interneurons of the Drosophila brain.

Motion vision is essential for navigating through the environment. Due to its genetic amenability, the fruit fly Drosophila has been serving for a lengthy period as a model organism for studying optomotor behavior as elicited by large-field horizontal motion. However, the neurons underlying the control of this behavior have not been studied in Drosophila so far. Here we report the first whole cell recordings from three cells of the horizontal system (HSN, HSE, and HSS) in the lobula plate of Drosophila. All three HS cells are tuned to large-field horizontal motion in a direction-selective way; they become excited by front-to-back motion and inhibited by back-to-front motion in the ipsilateral field of view. The response properties of HS cells such as contrast and velocity dependence are in accordance with the correlation-type model of motion detection. Neurobiotin injection suggests extensive coupling among ipsilateral HS cells and additional coupling to tangential cells that have their dendrites in the contralateral hemisphere of the brain. This connectivity scheme accounts for the complex layout of their receptive fields and explains their sensitivity both to ipsilateral and to contralateral motion. Thus the main response properties of Drosophila HS cells are strikingly similar to the responses of their counterparts in the blowfly Calliphora, although we found substantial differences with respect to their dendritic structure and connectivity. This long-awaited functional characterization of HS cells in Drosophila provides the basis for the future dissection of optomotor behavior and the underlying neural circuitry by combining genetics, physiology, and behavior.

[1]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[2]  A. Borst,et al.  Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. , 1993, Journal of neurophysiology.

[3]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[4]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[5]  Nathan W. Gouwens,et al.  Signal Propagation in Drosophila Central Neurons , 2009, The Journal of Neuroscience.

[6]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[7]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[8]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[9]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[10]  S. Laughlin,et al.  Insect motion detectors matched to visual ecology , 1996, Nature.

[11]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[12]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[13]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[14]  K Hausen,et al.  Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  M Egelhaaf,et al.  Are there separate ON and OFF channels in fly motion vision? , 1992, Visual Neuroscience.

[16]  Fritz-Olaf Lehmann,et al.  The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.

[17]  A. Borst,et al.  Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.

[18]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[19]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[20]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[21]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[22]  Dawnis M. Chow,et al.  The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila , 2007, Journal of Experimental Biology.

[23]  Antonia Marin-Burgin,et al.  A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections , 2005, Journal of Comparative Physiology A.

[24]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[25]  C. Gilbert,et al.  Oculomotor control in calliphorid flies: Head movements during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions , 1995, The Journal of comparative neurology.

[26]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[27]  Michael H Dickinson,et al.  Closing the loop between neurobiology and flight behavior in Drosophila , 2004, Current Opinion in Neurobiology.

[28]  N. Strausfeld,et al.  Anatomical organization of retinotopic motion‐sensitive pathways in the optic lobes of flies , 2003, Microscopy research and technique.

[29]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[30]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[31]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[32]  Alexander Borst,et al.  Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly , 2005, Journal of Comparative Physiology A.

[33]  Alexander Borst,et al.  Electrical Coupling of Lobula Plate Tangential Cells to a Heterolateral Motion-Sensitive Neuron in the Fly , 2008, The Journal of Neuroscience.

[34]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[35]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[36]  A. Borst,et al.  Dendritic Computation of Direction Selectivity and Gain Control in Visual Interneurons , 1997, The Journal of Neuroscience.

[37]  Martin Egelhaaf,et al.  A single control system for smooth and saccade-like pursuit in blowflies , 2005, Journal of Experimental Biology.

[38]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[39]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[40]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[41]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[42]  Martin Heisenberg,et al.  Comparative behavioral studies on two visual mutants ofDrosophila , 1972, Journal of comparative physiology.

[43]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[44]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[45]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.

[47]  Alexander Borst,et al.  Neural image processing by dendritic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[49]  Alexander Borst,et al.  The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..

[50]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[51]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[52]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[54]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[55]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[56]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[57]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[58]  Erich Buchner,et al.  Evidence for one-way movement detection in the visual system of Drosophila , 1978, Biological Cybernetics.

[59]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Martin Egelhaaf,et al.  On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.

[61]  A Borst,et al.  Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.

[62]  Paul D. Barnett,et al.  Sexual Dimorphism in the Hoverfly Motion Vision Pathway , 2008, Current Biology.

[63]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[64]  Martin Egelhaaf,et al.  Visually guided orientation in flies: case studies in computational neuroethology , 2003, Journal of Comparative Physiology A.

[65]  Alexander Borst,et al.  Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing , 2007, Front. Neurosci..

[66]  N. Strausfeld,et al.  The functional organization of male-specific visual neurons in flies , 1991, Journal of Comparative Physiology A.

[67]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[68]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[69]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[70]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[71]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[72]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[73]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[74]  W. Reichardt,et al.  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly , 1988, Biological Cybernetics.

[75]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[76]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[77]  M. Egelhaaf,et al.  Synaptic interactions increase optic flow specificity , 2000, The European journal of neuroscience.

[78]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[79]  Michael H Dickinson,et al.  Fly Flight A Model for the Neural Control of Complex Behavior , 2001, Neuron.