Comparison between calculated and observed F region electron density profiles at Jicamarca, Peru

Electron density profiles and isodensity coutours derived from Jicamarca incoherent scatter radar observations in Peru for October 1-2, 1970, are compared in detail with results from the Phillips Laboratory global theoretical ionospheric model. This model solves the ion continuity equation for O(+) concentration through production, loss and transport of ionization. The primary factor controlling the peak plasma density at Jicamarca is the vertical E x B drift, which drives the ionization upward during the day and downward at night. They illustrate the sensitivity of the low-latitude plasma density calculations to changes in the vertical E x B drift and changes in the neutral winds. They also compare the calculated profiles and peak parameters with an empirical model, the International Reference Ionosphere (IRI). They illustrate several limitations associated with the IR` that contribute to its limited capability at the magnetic equator.

[1]  Arthur D. Richmond,et al.  Low-latitude plasma drifts from a simulation of the global atmospheric dynamo , 1993 .

[2]  D. Crain,et al.  Effects of electrical coupling on equatorial ionospheric plasma motions: When is the F region a dominant driver in the low-latitude dynamo? , 1993 .

[3]  G. J. Bailey,et al.  A modelling study of the equatorial topside ionosphere , 1993 .

[4]  R. Stening Modelling the low latitude F region , 1992 .

[5]  Donald T. Farley,et al.  Early incoherent scatter observations at Jicamarca , 1991 .

[6]  Ronald F. Woodman,et al.  Average vertical and zonal F region plasma drifts over Jicamarca , 1991 .

[7]  Bela G. Fejer,et al.  Low latitude electrodynamic plasma drifts - A review , 1991 .

[8]  David N. Anderson,et al.  Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions , 1991 .

[9]  John A. Klobuchar,et al.  Evaluation of six ionospheric models as predictors of total electron content , 1991 .

[10]  N. W. Spencer,et al.  Revised global model of thermosphere winds using satellite and ground‐based observations , 1991 .

[11]  Timothy L. Killeen,et al.  Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data , 1988 .

[12]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[13]  David N. Anderson,et al.  A semi‐empirical low‐latitude ionospheric model , 1987 .

[14]  H. Hinteregger,et al.  Observational, reference and model data on solar EUV, from measurements on AE-E , 1981 .

[15]  R. Stening A two‐layer ionospheric dynamo calculation , 1981 .

[16]  Y. Chiu An improved phenomenological model of ionospheric density , 1975 .

[17]  D. Anderson,et al.  A theoretical study of the ionospheric F region equatorial anomaly—II. results in the American and Asian sectors , 1973 .

[18]  D. Anderson,et al.  A theoretical study of the ionospheric F region equatorial anomaly—I. Theory☆ , 1973 .

[19]  R. Woodman,et al.  Synthesis of Jicamarca Data During the Great Storm of March 8, 1970 , 1972 .

[20]  R. Woodman,et al.  Synthesis of Data Obtained at Jicamarca, Peru, During the September 11, 1969, Eclipse , 1972 .

[21]  M. McElroy,et al.  The F2-layer at middle latitudes , 1970 .

[22]  R. Moffett,et al.  Influence of electromagnetic drifts and neutral air winds on some features of the F sub 2 region , 1969 .

[23]  T. Hagfors,et al.  Methods for the measurement of vertical ionospheric motions near the magnetic equator by incoherent scattering , 1969 .

[24]  R. J. Moffett,et al.  lonization transport effects in the equatorial F region , 1966 .

[25]  D. Bilitza Comparison of measured and predicted F2 peak altitude , 1985 .

[26]  David N. Anderson,et al.  Global Maps of foF2 Derived from Observations and Theoretical Values , 1984 .

[27]  R. J. Moffett,et al.  The Equatorial Anomaly in the Electron Distribution of the Terrestrial F-Region , 1979 .

[28]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .