Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties

Quasi-spherical or quasi-rod gold nanoparticles with an average diameter of 3.8 nm are randomly precipitated in a silica-based glass by a heat-treatment method. After ultrafast laser irradiation at 400 and 620 nm, optical absorption, birefringence, and dichroism measurements are performed to investigate the modification of gold nanoparticles shape. Theoretical simulations have been carried out to interpret the experimental results. We suggest that a small fraction of gold nanospheres are transformed mainly into nanodisks but also into nanorods oriented along the laser polarization for both fs laser wavelength. Absorption simulation suggests that they have an aspect ratio of 1.8 and 0.5, respectively, for fs laser irradiation at 400 nm. For 620 nm, the aspect ratio of the nanorods increases and the one of the nanodisks decreases. In such a way, we demonstrate that reshaping of gold nanoparticles, i.e. a property that was previously found for silver nanoparticles in multicomponent glass is also possible. By...

[1]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[2]  C. R. Martin,et al.  Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory , 1992 .

[3]  Per Hanarp,et al.  Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography , 2003 .

[4]  G. Seifert,et al.  Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study , 2004 .

[5]  A. Crespo-Sosa,et al.  Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites. , 2009, Optics express.

[6]  Jinhai Si,et al.  Manipulation of gold nanoparticles inside transparent materials. , 2004, Angewandte Chemie.

[7]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[8]  A. Bishay,et al.  Radiation induced color centers in multicomponent glasses , 1970 .

[9]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  M. Broyer,et al.  Optical properties of gold clusters in the size range 2-4 nm , 1998 .

[11]  G. Seifert,et al.  Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes , 2009 .

[12]  J. Haug,et al.  Laser-Induced, Polarization Dependent Shape Transformation of Au/Ag Nanoparticles in Glass , 2009, Nanoscale research letters.

[13]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[14]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[15]  G. Seifert,et al.  Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation. , 2007, Optics letters.

[16]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[17]  B. Poumellec,et al.  Femtosecond laser irradiation stress induced in pure silica. , 2003, Optics express.

[18]  R. Gans,et al.  Über die Form ultramikroskopischer Silberteilchen , 1915 .

[19]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[20]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[21]  Guillaume Petite,et al.  Dynamics of femtosecond laser interactions with dielectrics , 2004 .

[22]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[23]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[24]  Jianfang Wang,et al.  Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres. , 2010, ACS nano.

[25]  G. Seifert,et al.  Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation , 2009 .

[26]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[27]  M. Lancry,et al.  Non reciprocal writing and chirality in femtosecond laser irradiated silica. , 2008, Optics express.

[28]  Charles R. Martin,et al.  Optical properties of composite membranes containing arrays of nanoscopic gold cylinders , 1992 .

[29]  Johannes Boneberg,et al.  Femtosecond laser near-field ablation from gold nanoparticles , 2006 .

[30]  Tian Ming,et al.  Growth of tetrahexahedral gold nanocrystals with high-index facets. , 2009, Journal of the American Chemical Society.

[31]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[32]  G. Seifert,et al.  Ultrashort laser pulse induced deformation of silver nanoparticles in glass , 1999 .

[33]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[34]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[35]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[36]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[37]  Charles R. Martin,et al.  Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit , 1997 .