Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.

[1]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[2]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[3]  J. Osborn Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .

[4]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[5]  Constantin Bacuta,et al.  Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains , 2003 .

[6]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[7]  Qun Lin,et al.  New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements , 2008, Math. Comput..

[8]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  M. Krízek Conforming finite element approximation of the Stokes problem , 1990 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  Joseph E. Pasciak,et al.  Shift Theorems for the Biharmonic Dirichlet Problem , 2002 .

[13]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[14]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[15]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[16]  Raytcho D. Lazarov,et al.  Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .

[17]  F. Chatelin Spectral approximation of linear operators , 2011 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .