Nonparametric Kullback-Leibler Stochastic Control

[1]  I. Kevrekidis,et al.  Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: effective description via diffusion maps. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[3]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[4]  Marc Toussaint,et al.  On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference , 2012, Robotics: Science and Systems.

[5]  H. Kushner,et al.  A Monte Carlo method for sensitivity analysis and parametric optimization of nonlinear stochastic systems , 1991 .

[6]  Marc Toussaint,et al.  Probabilistic inference for solving discrete and continuous state Markov Decision Processes , 2006, ICML.

[7]  Emanuel Todorov,et al.  Eigenfunction approximation methods for linearly-solvable optimal control problems , 2009, 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning.

[8]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[9]  Evangelos Theodorou,et al.  Relative entropy and free energy dualities: Connections to Path Integral and KL control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[10]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[11]  Emanuel Todorov,et al.  Linearly-solvable Markov decision problems , 2006, NIPS.

[12]  Mohamed-Ali Belabbas,et al.  Spectral methods in machine learning and new strategies for very large datasets , 2009, Proceedings of the National Academy of Sciences.

[13]  Marc Toussaint,et al.  Path Integral Control by Reproducing Kernel Hilbert Space Embedding , 2013, IJCAI.

[14]  H. Kappen Path integrals and symmetry breaking for optimal control theory , 2005, physics/0505066.

[15]  Jan Peters,et al.  Model learning for robot control: a survey , 2011, Cognitive Processing.

[16]  Stefan Schaal,et al.  Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation , 2012, IEEE Transactions on Robotics.

[17]  Wolfgang J. Runggaldier,et al.  Connections between stochastic control and dynamic games , 1996, Math. Control. Signals Syst..