A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization

A new method and algorithm for the efficient solution of a class of nonlinear semidefinite programming problems is introduced. The new method extends a concept proposed recently for the solution of convex semidefinite programs based on the sequential convex programming (SCP) idea. In the core of the method, a generally non-convex semidefinite program is replaced by a sequence of subproblems, in which nonlinear constraint and objective functions defined in matrix variables are approximated by block separable convex models. Global convergence is proved under reasonable assumptions. The article is concluded by numerical experiments with challenging Free Material Optimization problems subject to displacement constraints.

[1]  M. Kocvara,et al.  Free material optimization for stress constraints , 2007 .

[2]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[3]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[4]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[5]  Franz Rendl,et al.  A Boundary Point Method to Solve Semidefinite Programs , 2006, Computing.

[6]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[7]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[8]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[9]  Defeng Sun,et al.  The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming , 2008, Math. Program..

[10]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[11]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[12]  Claude Fleury,et al.  Efficient approximation concepts using second order information , 1989 .

[13]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[14]  Michal Kočvara,et al.  Free Material Optimization , 2003 .

[15]  F. Jarre An Interior Method for Nonconvex Semidefinite Programs , 2000 .

[16]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[17]  Martin P. Bendsøe,et al.  An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design , 1994 .

[18]  Dominikus Noll,et al.  Local convergence of an augmented Lagrangian method for matrix inequality constrained programming , 2007, Optim. Methods Softw..

[19]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[20]  Martin P. Bendsøe,et al.  Free material optimization via mathematical programming , 1997, Math. Program..

[21]  Héctor Ramírez Cabrera,et al.  A Global Algorithm for Nonlinear Semidefinite Programming , 2004, SIAM J. Optim..

[22]  Günter Leugering,et al.  A Sequential Convex Semidefinite Programming Algorithm with an Application to Multiple-Load Free Material Optimization , 2009, SIAM J. Optim..

[23]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[24]  Kai-Uwe Bletzinger,et al.  Extended method of moving asymptotes based on second-order information , 1993 .

[25]  U. Ringertz On finding the optimal distribution of material properties , 1993 .

[26]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[27]  Pierre Apkarian,et al.  Robust Control via Sequential Semidefinite Programming , 2002, SIAM J. Control. Optim..

[28]  J. Zowe,et al.  Free material optimization: recent progress , 2008 .

[29]  B. Borchers A C library for semidefinite programming , 1999 .

[30]  Arkadi Nemirovski,et al.  Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions , 1999, SIAM J. Optim..

[31]  Michael Stingl,et al.  The Worst-Case Multiple Load FMO Problem Revisited , 2006 .

[32]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[33]  Michal Kočvara,et al.  On the solution of large-scale SDP problems by the modified barrier method using iterative solvers , 2007, Math. Program..

[34]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[35]  Roman A. Polyak,et al.  Modified barrier functions (theory and methods) , 1992, Math. Program..

[36]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[37]  Gábor Rudolf,et al.  Arrival rate approximation by nonnegative cubic splines , 2005, 2005 IEEE International Conference on Electro Information Technology.

[38]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[39]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[40]  Christian Zillober Global Convergence of a Nonlinear Programming Method Using Convex Approximations , 2004, Numerical Algorithms.