A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation

We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond pulsar PSR J0030+0451, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer X-ray spectral-timing event data. We perform relativistic ray-tracing of thermal emission from hot regions of the pulsar’s surface. We assume two distinct hot regions based on two clear pulsed components in the phase-folded pulse-profile data; we explore a number of forms (morphologies and topologies) for each hot region, inferring their parameters in addition to the stellar mass and radius. For the family of models considered, the evidence (prior predictive probability of the data) strongly favors a model that permits both hot regions to be located in the same rotational hemisphere. Models wherein both hot regions are assumed to be simply connected circular single-temperature spots, in particular those where the spots are assumed to be reflection-symmetric with respect to the stellar origin, are strongly disfavored. For the inferred configuration, one hot region subtends an angular extent of only a few degrees (in spherical coordinates with origin at the stellar center) and we are insensitive to other structural details; the second hot region is far more azimuthally extended in the form of a narrow arc, thus requiring a larger number of parameters to describe. The inferred mass M and equatorial radius R eq are, respectively, and , while the compactness is more tightly constrained; the credible interval bounds reported here are approximately the 16% and 84% quantiles in marginal posterior mass.

[1]  Xiao-Li Meng,et al.  ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING , 2011, 1102.4610.

[2]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[3]  Z. Arzoumanian,et al.  New Pulsars from an Arecibo Drift Scan Search , 2000, astro-ph/0008054.

[4]  M. Bailes,et al.  Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.

[5]  B. Kumar,et al.  GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability , 2018, Physical Review C.

[6]  Philip Chang,et al.  Magnetic hydrogen atmosphere models and the neutron star RX J1856.5–3754 , 2006, astro-ph/0612145.

[7]  Andrew W. Steiner,et al.  THE NEUTRON STAR MASS–RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER , 2012, 1205.6871.

[8]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[9]  F. Lamb,et al.  DETERMINING NEUTRON STAR MASSES AND RADII USING ENERGY-RESOLVED WAVEFORMS OF X-RAY BURST OSCILLATIONS , 2013, 1304.2330.

[10]  W. Ho,et al.  Atmospheres and Spectra of Strongly Magnetized Neutron Stars. III. Partially Ionized Hydrogen Models , 2001, astro-ph/0104199.

[11]  A. Harding,et al.  Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. I. Curvature Radiation Pair Fronts , 2001, astro-ph/0104146.

[12]  R. Rutledge,et al.  REJECTING PROPOSED DENSE MATTER EQUATIONS OF STATE WITH QUIESCENT LOW-MASS X-RAY BINARIES , 2014, 1409.4306.

[13]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[14]  F. Gulminelli,et al.  The equation of state for dense nucleonic matter from a meta-modeling (II): predictions for neutron stars properties , 2017, 1708.06895.

[15]  Y. Lim,et al.  Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment. , 2018, Physical review letters.

[16]  F. Gulminelli,et al.  Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects , 2017, 1708.06894.

[17]  T. E. Riley,et al.  On parametrized cold dense matter equation-of-state inference , 2018, 1804.09085.

[18]  P. Landry,et al.  Inferring neutron star properties from GW170817 with universal relations , 2019, Physical Review D.

[19]  L. Keek,et al.  Burning in the Tail: Implications for a Burst Oscillation Model , 2018, The Astrophysical Journal.

[20]  A. Watts,et al.  Accreting Millisecond X-ray Pulsars , 2012, Timing Neutron Stars: Pulsations, Oscillations and Explosions.

[21]  F. Christensen,et al.  The NuSTAR view of the non-thermal emission from PSR J0437-4715 , 2015, 1512.03957.

[22]  A. Philippov,et al.  Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond , 2017, 1704.05062.

[23]  O. Kargaltsev,et al.  Hubble Space Telescope Detection of the Millisecond Pulsar J2124−3358 and its Far-ultraviolet Bow Shock Nebula , 2016, 1701.00002.

[24]  D. Psaltis,et al.  From Neutron Star Observables to the Equation of State. II. Bayesian Inference of Equation of State Pressures , 2017, 1704.00737.

[25]  Keith C. Gendreau,et al.  STROBE-X: X-ray Timing and Spectroscopy on Dynamical Timescales from Microseconds to Years , 2017 .

[26]  D. Kaplan,et al.  THE SPECTRUM OF THE RECYCLED PSR J0437−4715 AND ITS WHITE DWARF COMPANION , 2011, 1111.2346.

[27]  D. Psaltis,et al.  ROTATIONAL CORRECTIONS TO NEUTRON-STAR RADIUS MEASUREMENTS FROM THERMAL SPECTRA , 2014, 1407.3277.

[28]  J. Dyks,et al.  Rotational Sweepback of Magnetic Field Lines in Geometric Models of Pulsar Radio Emission , 2004, astro-ph/0402507.

[29]  A. Drago,et al.  Can very compact and very massive neutron stars both exist , 2013, 1309.7263.

[30]  J. Hartle,et al.  Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .

[31]  Astronomy,et al.  NEUTRON STAR MASSES AND RADII FROM QUIESCENT LOW-MASS X-RAY BINARIES , 2013, 1305.3242.

[32]  Stuart L. Shapiro,et al.  Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State , 1993 .

[33]  A. Watts Thermonuclear Burst Oscillations , 2012, 1203.2065.

[34]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[35]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[36]  S. Bogdanov,et al.  DEEP XMM-NEWTON SPECTROSCOPIC AND TIMING OBSERVATIONS OF THE ISOLATED RADIO MILLISECOND PULSAR PSR J0030+0451 , 2009, 0908.1971.

[37]  J. Poutanen,et al.  X-ray bursting neutron star atmosphere models: spectra and color corrections , 2011 .

[38]  D. Psaltis,et al.  Atmospheric Structure and Radiation Pattern for Neutron-star Polar Caps Heated by Magnetospheric Return Currents , 2019, The Astrophysical Journal.

[39]  D. Psaltis,et al.  Thermonuclear (Type I) X-Ray Bursts Observed by the Rossi X-Ray Timing Explorer , 2006, astro-ph/0608259.

[40]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[41]  E. Phinney,et al.  Hydromagnetic Structure of a Neutron Star Accreting at Its Polar Caps , 2001, Publications of the Astronomical Society of Australia.

[42]  M. Miller,et al.  Astrophysical Constraints on Dense Matter in Neutron Stars , 2013, Timing Neutron Stars: Pulsations, Oscillations and Explosions.

[43]  Jonathan E. Grindlay,et al.  Constraints on Neutron Star Properties from X-Ray Observations of Millisecond Pulsars , 2006, astro-ph/0612791.

[44]  D. Psaltis,et al.  PULSE PROFILES FROM SPINNING NEUTRON STARS IN THE HARTLE–THORNE APPROXIMATION , 2013, 1305.6615.

[45]  A. Piro,et al.  Surface Modes on Bursting Neutron Stars and X-Ray Burst Oscillations , 2005, astro-ph/0502546.

[46]  Jonathon Shlens,et al.  Notes on Kullback-Leibler Divergence and Likelihood , 2014, ArXiv.

[47]  L. Roberts,et al.  Viscous-dynamical Ejecta from Binary Neutron Star Mergers , 2018, The Astrophysical Journal.

[48]  A. Beloborodov,et al.  Electrodynamics of Pulsar Magnetospheres , 2016, Space Science Reviews.

[49]  S. Guillot Neutron stars in globular clusters as tests of nuclear physics , 2016 .

[50]  P. Pihajoki,et al.  Radiation from rapidly rotating oblate neutron stars , 2017, Astronomy & Astrophysics.

[51]  L. Rezzolla,et al.  Optimal Neutron-star Mass Ranges to Constrain the Equation of State of Nuclear Matter with Electromagnetic and Gravitational-wave Observations , 2019, The Astrophysical Journal.

[52]  E. Brown,et al.  NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397 , 2010, 1007.2415.

[53]  Y. Levin,et al.  Flame propagation on the surfaces of rapidly rotating neutron stars during Type I X-ray bursts , 2012, 1212.2872.

[54]  Ihep,et al.  Constraining the mass and radius of neutron stars in globular clusters , 2017, 1709.05013.

[55]  University of Cambridge,et al.  Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using NuSTAR , 2013, 1310.5776.

[56]  D. Psaltis,et al.  X-ray light curves from realistic polar cap models: inclined pulsar magnetospheres and multipole fields , 2019, Monthly Notices of the Royal Astronomical Society.

[57]  A. Watts,et al.  Thermal convection in rotating spherical shells: Temperature-dependent internal heat generation using the example of triple- α burning in neutron stars , 2018, Physical Review Fluids.

[58]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[59]  T. E. Riley,et al.  A NICER View of PSR J0030+0451: Implications for the Dense Matter Equation of State , 2019, The Astrophysical Journal.

[60]  Keith C. Gendreau,et al.  Constraining the Neutron Star Mass–Radius Relation and Dense Matter Equation of State with NICER. II. Emission from Hot Spots on a Rapidly Rotating Neutron Star , 2019, The Astrophysical Journal.

[61]  D. Psaltis,et al.  THE DENSE MATTER EQUATION OF STATE FROM NEUTRON STAR RADIUS AND MASS MEASUREMENTS , 2015, 1505.05155.

[62]  M. Aloy,et al.  Evolution of the surface magnetic field of rotating proto-neutron stars , 2017, 1711.09975.

[63]  R. Wijnands,et al.  Three-dimensional simulations of accretion to stars with complex magnetic fields , 2008, 0802.2308.

[64]  M. Carney,et al.  Comparing two models for measuring the neutron star equation of state from gravitational-wave signals , 2018, Physical Review D.

[65]  R. Essick,et al.  Nonparametric inference of the neutron star equation of state from gravitational wave observations , 2018, Physical Review D.

[66]  C. J. Zeippen,et al.  Updated opacities from the Opacity Project , 2004, astro-ph/0410744.

[67]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[68]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[69]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[70]  Mathieu Servillat,et al.  MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS , 2012, 1302.0023.

[71]  Craig O. Heinke,et al.  A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant , 2009, Nature.

[72]  S. Reddy,et al.  Critical examination of constraints on the equation of state of dense matter obtained from GW170817 , 2018, Physical Review C.

[73]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[74]  I. Grenier,et al.  Gamma-ray pulsars: a gold mine , 2015, 1509.08823.

[75]  R. Neuhaeuser,et al.  Toward a Mass and Radius Determination of the Nearby Isolated Neutron Star RX J185635–3754 , 2001, astro-ph/0107404.

[76]  Accretion to stars with non-dipole magnetic fields , 2006, astro-ph/0610487.

[77]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[78]  P. Bult,et al.  Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER , 2018, 1804.10214.

[79]  J. Poutanen,et al.  Bayesian parameter constraints for neutron star masses and radii using X-ray timing observations of accretion-powered millisecond pulsars , 2018, Astronomy & Astrophysics.

[80]  Michiel van der Klis,et al.  The highest frequency kHz QPOs in neutron star low-mass X-ray binaries , 2018, Monthly Notices of the Royal Astronomical Society.

[81]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[82]  D. Psaltis,et al.  SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON-STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. I. APPARENT RADII , 2011, 1103.5767.

[83]  C. Ftaclas,et al.  Hot spots on neutron stars - The near-field gravitational lens , 1982 .

[84]  L. Bildsten,et al.  Evolution of Young Neutron Star Envelopes , 2003, astro-ph/0312589.

[85]  M. Miller,et al.  DETERMINING NEUTRON STAR PROPERTIES BY FITTING OBLATE-STAR WAVEFORM MODELS TO X-RAY BURST OSCILLATIONS , 2014, 1407.2579.

[86]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[87]  J. Poutanen,et al.  Pulse profiles of millisecond pulsars and their Fourier amplitudes , 2006, astro-ph/0608663.

[88]  A. Tchekhovskoy,et al.  AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY , 2015, 1510.01734.

[89]  Juri Poutanen,et al.  Colloquium: Measuring the neutron star equation of state using x-ray timing , 2016, 1602.01081.

[90]  G. Rybicki,et al.  Thermal X-Rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars , 2008, 0801.4030.

[91]  M. Hobson,et al.  nestcheck: diagnostic tests for nested sampling calculations , 2018, Monthly Notices of the Royal Astronomical Society.

[92]  J. Kijak,et al.  Radio emission altitude in pulsars , 2003 .

[93]  Norbert Meidinger,et al.  The enhanced X-ray Timing and Polarimetry mission—eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[94]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[95]  Xiao-Li Meng,et al.  A FULLY BAYESIAN METHOD FOR JOINTLY FITTING INSTRUMENTAL CALIBRATION AND X-RAY SPECTRAL MODELS , 2014 .

[96]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[97]  The Parallax and Proper Motion of PSR J0030+0451 , 2005, astro-ph/0601521.

[98]  Edward Higson,et al.  Nestcheck: Error Analysis, Diagnostic Tests and Plots for Nested Sampling Calculations , 2018, J. Open Source Softw..

[99]  P. Uttley,et al.  Pulse-phase-resolved spectroscopy of continuum and reflection in SAX J1808.4-3658 , 2010, 1008.2708.

[100]  R. Blandford,et al.  On the evolution of slowly accreting neutron stars , 1992 .

[101]  N. Langer,et al.  Instability of magnetic equilibria in barotropic stars , 2014, 1411.7252.

[102]  M. Alford,et al.  Compact Stars with Sequential QCD Phase Transitions. , 2017, Physical review letters.

[103]  Luciano Rezzolla,et al.  New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. , 2018, Physical review letters.

[104]  D. Psaltis,et al.  Reconstructing the neutron-star equation of state from astrophysical measurements , 2009, 0905.1959.

[105]  T. E. Riley,et al.  A pitfall of piecewise-polytropic equation of state inference , 2018, 1804.09087.

[106]  S. Guillot,et al.  Neutron star radius measurement from the ultraviolet and soft X-ray thermal emission of PSR J0437−4715 , 2019, Monthly Notices of the Royal Astronomical Society.

[107]  D. Psaltis,et al.  FROM NEUTRON STAR OBSERVABLES TO THE EQUATION OF STATE. I. AN OPTIMAL PARAMETRIZATION , 2016, 1605.03591.

[108]  L. Natalucci,et al.  A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar , 2017, 1701.01774.

[109]  Deepto Chakrabarty,et al.  PROSPECTS FOR MEASURING NEUTRON-STAR MASSES AND RADII WITH X-RAY PULSE PROFILE MODELING , 2013, 1311.1571.

[110]  A. Sedrakian,et al.  Implications from GW170817 for Δ-isobar Admixed Hypernuclear Compact Stars , 2019, The Astrophysical Journal.

[111]  M. Kramer,et al.  CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS , 2014, 1404.2264.

[112]  Magnetorotational supernovae , 2004, astro-ph/0410234.

[113]  M. Bejger,et al.  Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters , 2017, 1711.02414.

[114]  J. Arons,et al.  Current flow and pair creation at low altitude in rotation-powered pulsars’ force-free magnetospheres: space charge limited flow , 2012, 1206.5819.

[115]  R. Hollerbach,et al.  Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields , 2017, 1710.01338.

[116]  J. Heyl r-Modes on Rapidly Rotating, Relativistic Stars. I. Do Type I Bursts Excite Modes in the Neutron Star Ocean? , 2001, astro-ph/0108450.

[117]  N. Webb,et al.  Constraining the Equation of State of Supranuclear Dense Matter from XMM-Newton Observations of Neutron Stars in Globular Clusters , 2007, 0708.3816.

[118]  J. Poutanen,et al.  Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method , 2015, 1509.06561.

[119]  Propagation of Thermonuclear Flames on Rapidly Rotating Neutron Stars: Extreme Weather during Type I X-Ray Bursts , 2001, astro-ph/0108074.

[120]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[121]  R. Perna,et al.  Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. , 2013, 1306.2156.

[122]  T. E. Riley,et al.  A NICER View of PSR J0030+0451: Evidence for a Global-scale Multipolar Magnetic Field , 2019, The Astrophysical Journal.

[123]  A. Ohnishi,et al.  Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy , 2016, 1611.07133.

[124]  L. Lindblom Causal representations of neutron-star equations of state , 2018, Physical Review D.

[125]  J. Schaffner-Bielich,et al.  CONSTRAINING NEUTRON STAR MATTER WITH QUANTUM CHROMODYNAMICS , 2014 .

[126]  W. Ho,et al.  The radius of the quiescent neutron star in the globular cluster M13 , 2018, 1803.00029.

[127]  R. Foster,et al.  The neutron star interior composition explorer (NICER): mission definition , 2014, Astronomical Telescopes and Instrumentation.

[128]  J. Abdallah,et al.  A new generation of Los Alamos opacity tables , 2016 .

[129]  E. Harrison,et al.  Acceleration of pulsars by asymmetric radiation , 1975 .

[130]  M. Alford,et al.  Characteristics of hybrid compact stars with a sharp hadron-quark interface , 2015, 1508.01261.

[131]  A. Mukherjee,et al.  Constraining the neutron-matter equation of state with gravitational waves , 2019, Physical Review D.

[132]  Juri Poutanen,et al.  On the Nature of the X-ray Emission of Accreting Millisecond Pulsar SAX J1808.4-3658 , 2002, astro-ph/0303084.

[133]  L. Rezzolla,et al.  Constraining twin stars with GW170817 , 2018, Physical Review D.

[134]  F. Özel,et al.  THE MASS AND THE RADIUS OF THE NEUTRON STAR IN THE TRANSIENT LOW-MASS X-RAY BINARY SAX J1748.9−2021 , 2013 .

[135]  Mark D. Egan,et al.  The Neutron star Interior Composition Explorer (NICER): design and development , 2016, Astronomical Telescopes + Instrumentation.

[136]  A. Steiner,et al.  Constraining nuclear matter parameters with GW170817 , 2018, Physical Review D.

[137]  Andrea Vacchi,et al.  Dense matter with eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[138]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[139]  A. Spitkovsky,et al.  AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS , 2014, 1412.0673.

[140]  P. Freire,et al.  H E ] 8 M ar 2 01 6 Masses , Radii , and Equation of State of Neutron Stars , 2016 .

[141]  J. Arons,et al.  Pair production and pulsar cutoff in magnetized neutron stars with nondipolar magnetic geometry , 1982 .

[142]  Corporate The MPI Forum MPI: a message passing interface , 1993, Supercomputing '93.

[143]  J. Lattimer,et al.  The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.

[144]  A. Melatos,et al.  Burial of the polar magnetic field of an accreting neutron star - I. Self-consistent analytic and numerical equilibria , 2004, astro-ph/0403173.

[145]  S. Morsink,et al.  UNIVERSALITY OF THE ACCELERATION DUE TO GRAVITY ON THE SURFACE OF A RAPIDLY ROTATING NEUTRON STAR , 2014, 1404.0609.

[146]  B. Lackey,et al.  Constraints on a phenomenologically parametrized neutron-star equation of state , 2008, 0812.2163.

[147]  P. Haensel,et al.  Maximum mass of neutron stars and strange neutron-star cores , 2012, 1211.1231.

[148]  G. Raaijmakers,et al.  Equation of state sensitivities when inferring neutron star and dense matter properties , 2018, Monthly Notices of the Royal Astronomical Society.

[149]  M. Catelán,et al.  New Constraints on the Nuclear Equation of State from the Thermal Emission of Neutron Stars in Quiescent Low-mass X-Ray Binaries , 2019, The Astrophysical Journal.

[150]  Tod E. Strohmayer,et al.  Relativistic Iron Emission Lines in Neutron Star Low-Mass X-Ray Binaries as Probes of Neutron Star Radii , 2007, 0708.3615.

[151]  Constraining neutron star matter with QCD , 2014, 1402.6618.

[152]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[153]  D. Leahy,et al.  The Oblate Schwarzschild Approximation for Light Curves of Rapidly Rotating Neutron Stars , 2007, astro-ph/0703123.

[154]  C.S.Reynolds,et al.  Broad iron lines in Active Galactic Nuclei , 2000, astro-ph/0004366.

[155]  A. Harding,et al.  PULSAR PAIR CASCADES IN MAGNETIC FIELDS WITH OFFSET POLAR CAPS , 2011, 1111.1668.

[156]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[157]  J. Poutanen,et al.  A NEUTRON STAR STIFF EQUATION OF STATE DERIVED FROM COOLING PHASES OF THE X-RAY BURSTER 4U 1724−307 , 2010, 1004.4871.

[158]  N. Wex,et al.  The double pulsar system: a unique laboratory for gravity , 2009 .

[159]  D. Leahy,et al.  Light Curves for Rapidly Rotating Neutron Stars , 2006, astro-ph/0609325.

[160]  A. Fabian,et al.  A NuSTAR observation of disc reflection from close to the neutron star in 4U 1608-52 , 2015, 1505.07112.

[161]  L. Bildsten The Fate of Accreted CNO Elements in Neutron Star Atmospheres , 1992 .

[162]  T. E. Strohmayer,et al.  RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS , 2009, 0908.1098.

[163]  E. Brown,et al.  THE EQUATION OF STATE FROM OBSERVED MASSES AND RADII OF NEUTRON STARS , 2010, 1005.0811.

[164]  D. Psaltis,et al.  RELATIONS BETWEEN NEUTRON-STAR PARAMETERS IN THE HARTLE–THORNE APPROXIMATION , 2013, 1306.0569.

[165]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[166]  J. Lattimer,et al.  Constraints on neutron star radii based on chiral effective field theory interactions. , 2010, Physical review letters.

[167]  G. Pavlov,et al.  Mass-to-Radius Ratio for the Millisecond Pulsar J0437?4715 , 1997, astro-ph/9709255.

[168]  D. Backer,et al.  X-Rays from the Nearby Solitary Millisecond Pulsar PSR J0030+0451: The Final ROSAT Observations , 2000, astro-ph/0009110.

[169]  D. Leahy,et al.  NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION , 2016, 1606.09232.

[170]  S. Bogdanov,et al.  NEUTRON STAR MASS–RADIUS CONSTRAINTS OF THE QUIESCENT LOW-MASS X-RAY BINARIES X7 AND X5 IN THE GLOBULAR CLUSTER 47 TUC , 2016, 1603.01630.

[171]  R. Romani A unified model of neutron-star magnetic fields , 1990, Nature.

[172]  J. Poutanen,et al.  The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts , 2014, 1406.0322.

[173]  V. Burwitz,et al.  The Chandra LETGS high resolution X-ray spectrum of the isolated neutron star RX J1856.5-3754 , 2001, astro-ph/0109374.

[174]  A. Spitkovsky,et al.  Ab-initio Pulsar Magnetosphere: Particle Acceleration in Oblique Rotators and High-energy Emission Modeling , 2017, 1707.04323.

[175]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[176]  M. Miller,et al.  Bounds on the Compactness of Neutron Stars from Brightness Oscillations during X-Ray Bursts , 1997, astro-ph/9711325.

[177]  P. Freeman,et al.  Is RX J1856.5-3754 a Quark Star? , 2002, astro-ph/0204159.

[178]  Takashi Okajima,et al.  Constraining the Neutron Star Mass–Radius Relation and Dense Matter Equation of State with NICER. I. The Millisecond Pulsar X-Ray Data Set , 2019, The Astrophysical Journal.

[179]  Harvard,et al.  Improved mass and radius constraints for quiescent neutron stars in ω Cen and NGC 6397 , 2014, 1406.1497.

[180]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[181]  Sanjay Reddy,et al.  Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations , 2018, The Astrophysical Journal.

[182]  J. Hartle Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .

[183]  A. Reisenegger Stable magnetic equilibria and their evolution in the upper main sequence, white dwarfs and neutron stars , 2008, 0809.0361.

[184]  G. Baym,et al.  From hadrons to quarks in neutron stars: a review , 2017, Reports on progress in physics. Physical Society.

[185]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[186]  Andrew C. Fabian,et al.  Broad Iron Lines in Active Galactic Nuclei , 2000 .

[187]  Will Handley,et al.  fgivenx: A Python package for functional posterior plotting , 2018, J. Open Source Softw..

[188]  S. Bogdanov THE NEAREST MILLISECOND PULSAR REVISITED WITH XMM-NEWTON: IMPROVED MASS–RADIUS CONSTRAINTS FOR PSR J0437–4715 , 2012, 1211.6113.

[189]  J. Poutanen,et al.  Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra , 2017, 1709.09120.

[190]  Jr.,et al.  A NEW GENERATION OF LOS ALAMOS OPACITY TABLES , 2016, 1601.01005.