Mechanistic Studies in Friction and Wear of Bulk Materials

From the context of a contemporary understanding of the phenomenological origins of friction and wear of materials, we review insightful contributions from recent experimental investigations of three classes of materials that exhibit uniquely contrasting tribological behaviors: metals, polymers, and ionic solids. We focus on the past decade of research by the community to better understand the correlations between environment parameters, materials properties, and tribological behavior in systems of increasingly greater complexity utilizing novel synthesis and in situ experimental techniques. In addition to such review, and a half-century after seminal publications on the subject, we present recently acquired evidence linking anisotropy in friction response with anisotropy in wear behavior of crystalline ionic solids as a function of crystallographic orientation. Although the tribological behaviors of metals, polymers, and ionic solids differ widely, it is increasingly more evident that the mechanistic ori...

[1]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[2]  Friction and Wear on the Atomic Scale , 2003 .

[3]  E. Meyer,et al.  Asymmetry in the reciprocal epitaxy of NaCl and KBr , 2007 .

[4]  Q. Xue,et al.  The friction and wear characteristics of nanometer SiC and polytetrafluoroethylene filled polyetheretherketone , 2000 .

[5]  E. Meyer,et al.  Friction experiments on the nanometre scale , 2001 .

[6]  Nam P. Suh,et al.  An overview of the delamination theory of wear , 1977 .

[7]  D Stoyan,et al.  Statistical characterization of TEM images of silica‐filled rubber , 2005, Journal of microscopy.

[8]  W. Sawyer,et al.  Tribological Sensitivity of PTFE/Alumina Nanocomposites to a Range of Traditional Surface Finishes , 2005 .

[9]  N. Suh,et al.  Mechanics of subsurface void nucleation in delamination wear , 1977 .

[10]  L. Schadler,et al.  Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology , 2000 .

[11]  S. Noel,et al.  Electrochemically activated wear of metal fibre brushes , 1987 .

[12]  L. E. Moberly,et al.  High-Current Brushes, Part I: Effect of Brush and Ring Materials , 1978 .

[13]  S. Toyooka,et al.  THE MECHANISM OF WEAR OF POLYTETRAFLUOROETHYLENE , 1973 .

[14]  Paul J. Mcwhorter,et al.  Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability , 2003 .

[15]  E. S. Clark The molecular conformations of polytetrafluoroethylene: forms II and IV , 1999 .

[16]  L. Schadler,et al.  Coupled Effect of Filler Content and Countersurface Roughness on PTFE Nanocomposite Wear Resistance , 2010 .

[17]  W. Sawyer,et al.  Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms , 2012 .

[18]  P. Cadman,et al.  The chemical nature of metal-polytetrafluoroethylene tribological interactions as studied by X-ray photoelectron spectroscopy , 1979 .

[19]  Czeslaw Kajdas,et al.  Importance of the triboemission process for tribochemical reaction , 2005 .

[20]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[21]  I. R. Kramer,et al.  Effect of vacuum on the fatigue life of aluminum , 1966 .

[22]  Pj Piet Lemstra,et al.  Materials With Improved Properties From Polymer-Ceramic Nanocomposites , 1999 .

[23]  D. Stoyan,et al.  Spatial statistics of carbon nanotube polymer composites , 2009 .

[24]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[25]  Cheng-I Weng,et al.  Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale , 2000 .

[26]  E. Meyer,et al.  Angular dependence of static and kinetic friction on alkali halide surfaces , 2010 .

[27]  V. Yamakov,et al.  Relation between grain growth and grain-boundary diffusion in a pure material by molecular dynamics simulations , 2006 .

[28]  Zhiping Luo,et al.  Quantitative study of the dispersion degree in carbon nanofiber/polymer and carbon nanotube/polymer nanocomposites , 2008 .

[29]  M Cieplak,et al.  Molecular Origins of Friction: The Force on Adsorbed Layers , 1994, Science.

[30]  R. Overney,et al.  Effect of interfacial liquid structuring on the coherence length in nanolubrication. , 2002, Physical review letters.

[31]  P. Reichner,et al.  High Current Tests of Metal Fiber Brushes , 1981 .

[32]  Seh Chun Lim,et al.  Recent developments in wear- mechanism maps , 1998 .

[33]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[34]  P. Kotula,et al.  Grain boundary diffusivity of Ni in Au thin films and the associated degradation in electrical contact resistance due to surface oxide film formation , 2013 .

[35]  I. Szlufarska,et al.  Recent advances in single-asperity nanotribology , 2008 .

[36]  S. Phillpot,et al.  Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation , 2003 .

[37]  D. Tabor,et al.  Friction and Transfer of Polytetrafluoroethylene , 1964, Nature.

[38]  L. Schadler,et al.  Crystal growth in alumina/poly(ethylene terephthalate) nanocomposite films , 2007 .

[39]  M. Moseler,et al.  Ageing of a microscopic sliding gold contact at low temperatures. , 2011, Physical review letters.

[40]  Ranga Komanduri,et al.  MD simulation of indentation and scratching of single crystal aluminum , 2000 .

[41]  J. J. Weeks,et al.  Crystal structure of the low temperature phase (II) of polytetrafluoroethylene , 1981 .

[42]  W. Sawyer,et al.  Low wear metal sliding electrical contacts at high current density , 2012 .

[43]  Scott S. Perry,et al.  Sliding orientation effects on the tribological properties of polytetrafluoroethylene , 2007 .

[44]  W. Sawyer,et al.  Asymmetric wear behavior of self-mated copper fiber brush and slip-ring sliding electrical contacts in a humid carbon dioxide environment , 2010 .

[45]  T. D. Fornes,et al.  Nylon 6 nanocomposites: the effect of matrix molecular weight , 2001 .

[46]  M. Robbins,et al.  Adhesion and Friction of Thin Films , 1997 .

[47]  W. Sawyer,et al.  Polytetrafluoroethylene matrix nanocomposites for tribological applications , 2008 .

[48]  Seh Chun Lim,et al.  Overview no. 55 Wear-Mechanism maps , 1987 .

[49]  Donald W. Brenner,et al.  Computer Simulations of Nanometer-Scale Indentation and Friction , 2010 .

[50]  W. Sawyer,et al.  Copper-beryllium metal fiber brushes in high current density sliding electrical contacts , 2010 .

[51]  W. Gacitúa,et al.  POLYMER NANOCOMPOSITES: SYNTHETIC AND NATURAL FILLERS A REVIEW , 2005 .

[52]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[53]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[54]  M. Cocks,et al.  Interaction of Sliding Metal Surfaces , 1962 .

[55]  Danny Perez,et al.  Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. , 2011, Physical review letters.

[56]  F. P. Bowden,et al.  Anisotropy of Friction in Crystals , 1964, Nature.

[57]  D. Kuhlmann-Wilsdorf,et al.  Effects of Surface Films on the Performance of Silver-Graphite (75 wt% Ag, 25 wt% C) Electric Brushes , 1980 .

[58]  S. Yang,et al.  Deposition and tribological behaviour of sputtered carbon hard coatings , 2000 .

[59]  L. Kantorovich,et al.  Physical dissipation mechanisms in non-contact atomic force microscopy , 2004 .

[60]  Robbins,et al.  Phase transitions and universal dynamics in confined films. , 1992, Physical review letters.

[61]  J. Saint-Michel,et al.  Low wear metallic fibre brushes , 1982 .

[62]  Paul H. Holloway,et al.  Analysis of grain‐boundary diffusion in thin films: Chromium in gold , 1976 .

[63]  A. Erdemir A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings , 2005 .

[64]  M. Antler Tribological Properties of Gold for Electric Contacts , 1973 .

[65]  C. Coutier,et al.  Electrical Contact Reliability in a Magnetic MEMS Switch , 2008, 2008 Proceedings of the 54th IEEE Holm Conference on Electrical Contacts.

[66]  Richard T. Williams,et al.  Lateral and friction forces originating during force microscope scanning of ionic surfaces , 1995 .

[67]  F. Kennedy,et al.  Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites , 1992 .

[68]  K. Komvopoulos,et al.  Molecular dynamics simulation of single and repeated indentation , 1997 .

[69]  Krishna Rajan,et al.  Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods , 2012, Tribology Letters.

[70]  T. Blanchet,et al.  Effect of particle size and volume fraction of irradiated FEP filler on the transfer wear of PTFE , 2002 .

[71]  D. Rigney,et al.  Plastic deformation and sliding friction of metals , 1979 .

[72]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[73]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .

[74]  A. Fasolino,et al.  Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model , 2005 .

[75]  P. Reichner,et al.  Metallic Brushes for Extreme High-Current Applications , 1980 .

[76]  Gourdon,et al.  Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt , 1998, Science.

[77]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[78]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[79]  S. Banks,et al.  Spatial geometric effects on the friction coefficients of UHMWPe , 2008 .

[80]  T. Nieh,et al.  Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel , 2002 .

[81]  C. Lo,et al.  Hardening mechanisms of hard gold , 1979 .

[82]  E. B. Orler,et al.  The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE) , 2006 .

[83]  Yoshitada Isono,et al.  Molecular Dynamics Simulations of Atomic Scale Indentation and Cutting Process with Atomic Force Microscope , 1999 .

[84]  J. L. Johnson,et al.  High current brushes: VIII: Effect of electrical load , 1982 .

[85]  Hiroaki Tanaka,et al.  Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis , 1997 .

[86]  H. Morkoç,et al.  Reactive Molecular-Beam Epitaxy for Wurtzite GaN , 1997 .

[87]  A. Shluger,et al.  SELF-LUBRICATION IN SCANNING-FORCE-MICROSCOPE IMAGE FORMATION ON IONIC SURFACES , 1997 .

[88]  Morton Antler,et al.  Processes of metal transfer and wear , 1964 .

[89]  R. Roscoe XXXII. The plastic deformation of cadmium single-crystals , 1936 .

[90]  Behaviour of fibre brushes under transient atmospheric conditions , 1984 .

[91]  W. Sawyer,et al.  A study on the friction and wear behavior of PTFE filled with alumina nanoparticles , 2003 .

[92]  J. Johnson,et al.  Electrical-Power Brushes for Dry Inert-Gas Atmospheres , 1971 .

[93]  Wei-min Liu,et al.  An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK , 1996 .

[94]  D. Buckley,et al.  Adhesion and friction of PTFE in contact with metals as studied by Auger spectroscopy, field ion and scanning electron microscopy , 1973 .

[95]  S. Zhaob,et al.  route to wear resistant PTFE via trace loadings of functionalized nanofillers , 2009 .

[96]  R. Nemanich,et al.  Temperature Dependence of Single-Asperity Diamond−Diamond Friction Elucidated Using AFM and MD Simulations , 2008 .

[97]  Irving F. Stowers,et al.  Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surfaces , 1993 .

[98]  D. Buckley,et al.  Surface effects in adhesion, friction, wear, and lubrication , 1981 .

[99]  E. Meyer,et al.  Friction force microscopy on clean surfaces of NaCl, NaF, and AgBr , 1994 .

[100]  D. Burris,et al.  Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite , 2013 .

[101]  Q. Xue,et al.  Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC , 1997 .

[102]  E. Meyer,et al.  Atomic friction studies on well-defined surfaces , 2001 .

[103]  Toshio Kurauchi,et al.  Mechanical properties of nylon 6-clay hybrid , 1993 .

[104]  M. Ashby,et al.  Wear-mechanism maps , 1990 .

[105]  B. Boyce,et al.  Frictional performance and near-surface evolution of nanocrystalline Ni–Fe as governed by contact stress and sliding velocity , 2013 .

[106]  J. Simpson,et al.  Comparative measures of single-wall carbon nanotube dispersion. , 2006, The journal of physical chemistry. B.

[107]  Zone-Ching Lin,et al.  A nano-orthogonal cutting model based on a modified molecular dynamics technique , 2004 .

[108]  Ali Erdemir,et al.  Tribology of diamond-like carbon films: recent progress and future prospects , 2006 .

[109]  Ali Erdemir,et al.  Review of engineered tribological interfaces for improved boundary lubrication , 2005 .

[110]  W. Sawyer,et al.  High current density copper-on-copper sliding electrical contacts at low sliding velocities , 2009 .

[111]  W. Sawyer,et al.  Effect of Particle Size on the Wear Resistance of Alumina-Filled PTFE Micro- and Nanocomposites , 2008 .

[112]  Gong Deli,et al.  ESCA study on tribochemical characteristics of filled PTFE , 1991 .

[113]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[114]  M. Dugger,et al.  In-situ Vapor-Phase Lubrication of MEMS , 2008 .

[115]  韩平,et al.  STUDY ON FACTORS AFFECTING ROOM TEMPERATURE TRANSITION OF POLYTETRAFLUOROETHYLENE , 1986 .

[116]  Tao Sun,et al.  Study on effects of the feed on AFM-based nano-scratching process using MD simulation , 2007 .

[117]  Edward J. McCumiskey,et al.  Tribofilm Formation and Run-In Behavior in Ultra-Low-Wearing Polytetrafluoroethylene (PTFE) and Alumina Nanocomposites , 2014 .

[118]  W. Sawyer,et al.  Polymeric Nanocomposites for Tribological Applications , 2007 .

[119]  R. Kaneko,et al.  Observation of Superlubricity by Scanning Tunneling Microscopy , 1997 .

[120]  J. Joyce Fracture toughness evaluation of polytetrafluoroethylene , 2003 .

[121]  J. Lancaster Polymer-based bearing materials—The role of fillers and fibre reinforcement in wear , 1972 .

[122]  W. Sawyer,et al.  Accessing Inaccessible Interfaces: In Situ Approaches to Materials Tribology , 2008 .

[123]  Richard W. Siegel,et al.  Glass transition behavior of alumina/polymethylmethacrylate nanocomposites , 2002 .

[124]  Kathryn L. Harris,et al.  In Vacuo Tribological Behavior of Polytetrafluoroethylene (PTFE) and Alumina Nanocomposites: The Importance of Water for Ultralow Wear , 2013, Tribology Letters.

[125]  Kazem Majdzadeh-Ardakani,et al.  Processing of transmission electron microscope images for quantification of the layer dispersion degree in polymer-clay nanocomposites , 2009 .

[126]  Sheng Lin-Gibson,et al.  Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites , 2007 .

[127]  Doris Kuhlmann,et al.  On the Theory of Plastic Deformation , 1951 .

[128]  M. R. Pinnel,et al.  Low‐temperature diffusion of copper through gold , 1976 .

[129]  P. Kotula,et al.  Friction transitions in nanocrystalline nickel , 2011 .

[130]  E. Meyer,et al.  Atomic-scale stick-slip processes on Cu(111) , 1999 .

[131]  G. Strobl,et al.  Chain Reorientation in Poly(tetrafluoroethylene) by Mobile Twin-Helix Reversal Defects , 1994 .

[132]  B. Boyce,et al.  A Review of Fatigue Behavior in Nanocrystalline Metals , 2010 .

[133]  Hendrik Hölscher,et al.  Simulation of a scanned tip on a NaF(001) surface in friction force microscopy , 1996 .

[134]  N. Ozawa,et al.  Transfer-Film Formation Mechanism of Polytetrafluoroethylene: A Computational Chemistry Approach , 2013 .

[135]  H. Hölscher,et al.  Temperature dependence of point contact friction on silicon , 2006 .

[136]  Gaorong Han,et al.  Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites , 2003 .

[137]  W. Sawyer,et al.  Plasmonic Diagnostics for Tribology: In Situ Observations Using Surface Plasmon Resonance in Combination with Surface-Enhanced Raman Spectroscopy , 2012, Tribology Letters.

[138]  S. Ciraci,et al.  ATOMIC-SCALE STUDY OF DRY SLIDING FRICTION , 1997 .

[139]  Zhang Bing,et al.  Effect of tribochemical reaction of polytetrafluoroethylene transferred film with substrates on its wear behaviour , 1990 .

[140]  L. Andersson A review of recent work on hard i-C films☆ , 1981 .

[141]  Q. Xue,et al.  The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK , 1996 .

[142]  P. T. Lillehei,et al.  A quantitative assessment of carbon nanotube dispersion in polymer matrices , 2009, Nanotechnology.

[143]  Zhiping Luo,et al.  Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy , 2008 .

[144]  W. Sawyer,et al.  Frictional Voltammetry with Copper , 2012, Tribology Letters.

[145]  L. Schadler,et al.  Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties , 2000 .

[146]  A. Mukherjee,et al.  Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? , 2005 .

[147]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[148]  J. Koo,et al.  Quantifying the dispersion of mixture microstructures , 2007, Journal of microscopy.

[149]  A. Tewari,et al.  Transmission electron microscopy based direct mathematical quantifiers for dispersion in nanocomposites , 2007 .

[150]  R. Bennewitz Friction Force Microscopy , 2015 .

[151]  S. Kawakami,et al.  Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites , 1982 .

[152]  Eric N. Brown,et al.  The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE) , 2005 .

[153]  David A. Rigney,et al.  Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials , 2000 .

[154]  Jong-hwan Kim,et al.  Boric acid self-lubrication of B2O3-Filled polymer composites© , 1999 .

[155]  J. R. Morris,et al.  Molecular dynamics simulation of nanoscale machining of copper , 2003 .

[156]  D. Tabor Hardness of Metals , 1937, Nature.

[157]  Fei Li,et al.  The tribological behaviors of copper-coated graphite filled PTFE composites , 2000 .

[158]  J H Dumbleton,et al.  Mechanistic and Morphological Origins of Ultra-High Molecular Weight Polyethylene Wear Debris in Total Joint Replacement Prostheses , 1996, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[159]  D. Scott Delamination theory of wear , 1978 .

[160]  Tsutomu Takeichi,et al.  Studies on thermal and mechanical properties of polyimide-clay nanocomposites , 2001 .

[161]  D. Duquette,et al.  The effect of environment on the mechanism of Stage I fatigue fracture , 1971, Metallurgical Transactions.

[162]  Ying Li,et al.  Probing the use of small‐angle light scattering for characterizing structure of titanium dioxide/low‐density polyethylene nanocomposites , 2006 .

[163]  Yoshitada Isono,et al.  Three-Dimensional Molecular Dynamics Simulation of Atomic Scale Precision Processing Using a Pin Tool. , 1997 .

[164]  G. Vigier,et al.  Nanofillers in polymeric matrix : a study on silica reinforced PA6 , 2001 .

[165]  D. Wolf,et al.  Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation , 2003 .

[166]  R. Steijn Friction and wear of single crystals , 1964 .

[167]  V. Causin,et al.  Relationship between the Size of the Latex Beads and the Solid-Solid Phase Transitions in Emulsion Polymerized Poly(tetrafluoroethylene) , 2004 .

[168]  H. Shindo,et al.  Frictional Force Microscopic Anisotropy on (001) Surfaces of Alkali Halides and MgO , 2000 .

[169]  E. Meyer,et al.  Atomic-scale friction modulated by a buried interface: Combined atomic and friction force microscopy experiments , 2008 .

[170]  Meyer,et al.  Velocity dependence of atomic friction , 2000, Physical review letters.

[171]  G. McClelland,et al.  Atomic-scale friction of a tungsten tip on a graphite surface. , 1987, Physical review letters.

[172]  D. Kuhlmann-wilsdorf,et al.  Metal Fiber Brushes , 2017 .

[173]  J. Ganghoffer,et al.  Atomistic mechanisms of adhesive contact formation and interfacial processes , 2006 .

[174]  Qunji Xue,et al.  The friction and wear properties of nanometre SiO2 filled polyetheretherketone , 1997 .

[175]  J. Greenwood Constriction resistance and the real area of contact , 1966 .

[176]  David L. Burris,et al.  A quantitative method for measuring nanocomposite dispersion , 2010 .

[177]  J. Bennett,et al.  Mass diffusion in polycrystalline copper/electroplated gold planar couples , 1972 .

[178]  Uzi Landman,et al.  Atomic-Scale Issues in Tribology: Interfacial Junctions and Nano-elastohydrodynamics† , 1996 .

[179]  Frank T. Fisher,et al.  Reinforcement mechanisms in MWCNT-filled polycarbonate , 2006 .

[180]  I. Daniel,et al.  Mechanical and thermal behavior of clay/epoxy nanocomposites , 2006 .

[181]  W. Sawyer,et al.  Thermally Activated Friction , 2007 .

[182]  F. Wei,et al.  The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry , 2006 .

[183]  S. Cousland,et al.  Systematic microstructural changes peculiar to fatigue deformation , 1963 .

[184]  J. Celis,et al.  Tribocorrosion of materials: interplay between chemical, electrochemical and mechanical reactivity of surfaces , 2004 .

[185]  V. Barone,et al.  Disordered Chain Conformations of Poly(tetrafluoroethylene) in the High-Temperature Crystalline Form I , 2004 .

[186]  W. Gregory Sawyer,et al.  A low friction and ultra low wear rate PEEK/PTFE composite , 2006 .

[187]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[188]  E. Meyer,et al.  Abrasive wear on the atomic scale. , 2002, Physical review letters.

[189]  S. Perry,et al.  Temperature-Dependent Atomic Scale Friction and Wear on PbS(100) , 2010 .

[190]  Y. Okinaka,et al.  Some recent topics in gold plating for electronics applications , 1998 .

[191]  M. Antler,et al.  Sliding Wear of Metallic Contacts , 1981 .

[192]  M. R. Pinnel,et al.  Relative rates of nickel diffusion and copper diffusion through gold , 1977 .

[193]  N. Suh,et al.  Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites , 1979 .

[194]  S. Phillpot,et al.  Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. , 2001 .

[195]  M. Robbins,et al.  Origin of Stick-Slip Motion in Boundary Lubrication , 1990, Science.

[196]  A. Erdemir A crystal-chemical approach to lubrication by solid oxides , 2000 .

[197]  T. Christenson,et al.  EBSD studies on wear-induced subsurface regions in LIGA nickel , 2003 .

[198]  Ernst Meyer,et al.  Site-specific friction force spectroscopy , 1996 .

[199]  M. Dugger,et al.  Wear resistant electrically conductive Au–ZnO nanocomposite coatings synthesized by e-beam evaporation , 2013 .

[200]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[201]  B. Fregly,et al.  Quantifying Multidirectional Sliding Motions in Total Knee Replacements , 2005 .

[202]  S. K. Biswas,et al.  Friction and wear of PTFE — a review , 1992 .

[203]  Stefano Mischler,et al.  Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation , 2008 .

[204]  Peter J. Blau,et al.  Fifty years of research on the wear of metals , 1997 .

[205]  E. Fromm Low-Temperature Oxidation , 1998 .

[206]  A. Munitz,et al.  The increase in the electrical resistance of heat-treated Au/Cr films , 1980 .

[207]  J. Frenken,et al.  Model experiments of superlubricity of graphite , 2005 .

[208]  P. J. Raea,et al.  The properties of poly ( tetrafluoroethylene ) ( PTFE ) in compression , 2004 .

[209]  Klaus Friedrich,et al.  On sliding friction and wear of PEEK and its composites , 1995 .

[210]  D. Rigney Comments on the sliding wear of metals , 1997 .

[211]  A. Needlemana,et al.  Plastic deformation of freestanding thin films : Experiments and modeling , 2006 .

[212]  Brandon A. Krick,et al.  High-Temperature Vapor Phase Lubrication Using Carbonaceous Gases , 2010 .

[213]  Jason E. Action,et al.  Wear-Rate Uncertainty Analysis , 2004 .

[214]  Bin-yuan Zhao,et al.  The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene , 2001 .

[215]  M. Dugger,et al.  Electrical Contact Resistance Degradation of a Hot-Switched Simulated Metal MEMS Contact , 2005, IEEE Transactions on Components and Packaging Technologies.

[216]  Shyam Bahadur,et al.  The action of fillers in the modification of the tribological behavior of polymers , 1992 .

[217]  D. Kuhlmann-wilsdorf,et al.  Production and performance of metal foil brushes , 1981 .

[218]  W. Sawyer,et al.  Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles , 2006 .

[219]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[220]  E. Brown,et al.  The properties of poly(tetrafluoroethylene) (PTFE) in tension , 2004 .

[221]  D. Tabor,et al.  The wear of filled polytetrafluoroethylene , 1984 .

[222]  A. Bhowmick,et al.  New insights into rubber–clay nanocomposites by AFM imaging , 2006 .

[223]  Koji Kato,et al.  Tribology of ceramics , 1990 .

[224]  M. Schulz,et al.  Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites , 2006 .

[225]  M. Antler,et al.  Gold plated contacts: effect of thermal aging on contact resistance , 1997, Electrical Contacts - 1997 Proceedings of the Forty-Third IEEE Holm Conference on Electrical Contacts.

[226]  S. S. Sternstein,et al.  Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics , 2003 .