A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique

This paper presents a design methodology for an ultra-low-power (ULP) and ultra-low-voltage (ULV) ultra-wideband (UWB) resistive-shunt feedback low-noise amplifier (LNA). The ULV circuit design challenges are discussed and a new biasing metric for ULV and ULP designs in deep-submicrometer CMOS technologies is introduced. Series inductive peaking in the feedback loop is analyzed and employed to enhance the bandwidth and noise performance of the LNA. Exploiting the new biasing metric, the design methodology, and series inductive peaking in the feedback loop, a 0.5 V, 0.75-mW broadband LNA with a current reuse scheme is implemented in a 90-nm CMOS technology. Measurement results show 12.6-dB voltage gain, 0.1-7-GHz bandwidth, 5.5-dB NF, -9-dBm IIP3, and -18-dB P1dB while occupying 0.23 mm2.

[1]  Hsiao-Chin Chen,et al.  0.5-V 5.6-GHz CMOS Receiver Subsystem , 2009, IEEE Transactions on Microwave Theory and Techniques.

[2]  Joy Laskar,et al.  A 3.6mW differential common-gate CMOS LNA with positive-negative feedback , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  Giuseppe Palmisano,et al.  A 3–10-GHz Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband Communication , 2011, IEEE Transactions on Microwave Theory and Techniques.

[4]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[5]  Peter R. Kinget,et al.  An Ultra-Low Voltage, Low-Noise, High Linearity 900-MHz Receiver With Digitally Calibrated In-Band Feed-Forward Interferer Cancellation in 65-nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[6]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[7]  P. Sivonen,et al.  A 1.2-V Highly Linear Balanced Noise-Cancelling LNA in 0.13-$\mu{\hbox{m}}$ CMOS , 2008, IEEE Journal of Solid-State Circuits.

[8]  Gary Brown,et al.  Linearization of CMOS LNA's via optimum gate biasing , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[9]  P. Kinget,et al.  A 0.5 V 900 MHz CMOS Receiver Front End , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[10]  Dimitri Linten,et al.  An ESD-Protected DC-to-6GHz 9.7mW LNA in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[11]  Christian Enz,et al.  Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design , 2006 .

[12]  E. Vittoz,et al.  Charge-Based MOS Transistor Modeling , 2006 .

[13]  P. Heydari,et al.  Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA , 2007, IEEE Journal of Solid-State Circuits.

[14]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[15]  Shen-Iuan Liu,et al.  Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Yo-Sheng Lin,et al.  Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a $ \pi $-Match Input Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[17]  Changwan Kim,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005, IEEE Journal of Solid-State Circuits.

[18]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[19]  Kiat Seng Yeo,et al.  A Wideband Low Power Low-Noise Amplifier in CMOS Technology , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[21]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[22]  Yueh-Hua Yu,et al.  A 0.6-V Low Power UWB CMOS LNA , 2007, IEEE Microwave and Wireless Components Letters.

[23]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[24]  A. A. Abidi,et al.  General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback , 2003 .

[25]  Y.-S. Lin,et al.  0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique , 2011 .

[26]  Denis Flandre,et al.  A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA , 1996, IEEE J. Solid State Circuits.

[27]  Jinghong Chen,et al.  ESD-Protected Wideband CMOS LNAs Using Modified Resistive Feedback Techniques With Chip-on-Board Packaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  F. Svelto,et al.  A 750 mV Fully Integrated Direct Conversion Receiver Front-End for GSM in 90-nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[29]  Yuanjin Zheng,et al.  A 0.18-/spl mu/m CMOS UWB LNA with 5 GHz Interference Rejection , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[30]  F. Zhang,et al.  Low-power programmable gain CMOS distributed LNA , 2006, IEEE Journal of Solid-State Circuits.

[31]  Li Zhang,et al.  A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Peter R. Kinget,et al.  A 0.6-V Zero-IF/Low-IF Receiver With Integrated Fractional-N Synthesizer for 2.4-GHz ISM-Band Applications , 2010, IEEE Journal of Solid-State Circuits.

[33]  M. Chen,et al.  A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS , 2009, IEEE Microwave and Wireless Components Letters.

[34]  Da-Chiang Chang,et al.  A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques , 2007, IEEE Microwave and Wireless Components Letters.

[35]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[36]  Chien-Nan Kuo,et al.  Low-Noise Amplifier Design With Dual Reactive Feedback for Broadband Simultaneous Noise and Impedance Matching , 2010, IEEE Transactions on Microwave Theory and Techniques.

[37]  Jusung Kim,et al.  Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[38]  Payam Heydari,et al.  A Novel Power Optimization Technique for Ultra-Low Power RFICs , 2006, ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design.