Fully Discrete Multiscale Galerkin BEM

Abstract We analyze multiscale Galerkin methods for strongly elliptic boundary integral equations of order zero on closed surfaces in ℝ 3 . Piecewise polynomial, discontinuous multiwavelet bases of any polynomial degree are constructed explicitly. We show that optimal convergence rates in the boundary energy norm and in certain negative norms can be achieved with “compressed” stiffness matrices containing O ( N (log N ) 2 ) nonvanishing entries, where N denotes the number of degrees of freedom on the boundary manifold. We analyze a quadrature scheme giving rise to fully discrete methods. We show that the fully discrete scheme preserves the asymptotic accuracy of the Galerkin scheme with exact integration and without compression. The overall computational complexity of our algorithm is O ( N (log N ) 4 ) kernel evaluations. The implications of the results for the numerical solution of elliptic boundary value problems in or exterior to bounded, three-dimensional domains are discussed.

[1]  David A. H. Jacobs,et al.  The State of the Art in Numerical Analysis. , 1978 .

[2]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[3]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[4]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[5]  Peter Oswald,et al.  On Function Spaces Related to Finite Element Approximation Theory , 1990 .

[6]  Johannes Elschner,et al.  The double-layer potential operator over polyhedral domains II: Spline Galerkin methods , 1992 .

[7]  Ralf Kieser Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente , 1991 .

[8]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[9]  C. Chui Wavelet Analysis and Its Applications , 1992 .

[10]  L. R. Scott,et al.  An analysis of quadrature errors in second-kind boundary integral methods , 1989 .

[11]  H. Moritz Advanced Physical Geodesy , 1980 .

[12]  Stefan Hildebrandt,et al.  Constructive proofs of representation theorems in separable Hilbert space , 1964 .

[13]  Christoph Schwab,et al.  Fully discrete multiscale Garlekin BEM , 1995 .

[14]  Wolfgang Hackbusch,et al.  On the efficient use of the Galerkin-method to solve Fredholm integral equations , 1993 .

[15]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[16]  J. Nédélec,et al.  Integral equations with non integrable kernels , 1982 .

[17]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[18]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[19]  Reinhold Schneider,et al.  Multiwavelets for Second-Kind Integral Equations , 1997 .

[20]  Thanh Tran,et al.  The K -operator and the Galerkin method for strongly elliptic equations on smooth curves: local estimates , 1995 .

[21]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[22]  Christoph Schwab,et al.  On the extraction technique in boundary integral equations , 1999, Mathematics of Computation.

[23]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[24]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[25]  Solomon G. Mikhlin,et al.  Multidimensional singular integral equations , 1986 .

[26]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[27]  Christoph Schwab,et al.  Kernel Properties and Representations of Boundary Integral Operators , 1992 .

[28]  F. Olver Asymptotics and Special Functions , 1974 .

[29]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[30]  I. Duff,et al.  The state of the art in numerical analysis , 1997 .

[31]  Andreas Rathsfeld,et al.  A Wavelet Algorithm for the Solution of the Double Layer Potential Equation over Polygonal Boundaries , 1995 .