The ASAS-SN catalogue of variable stars VI: an all-sky sample of δ Scuti stars

We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.

[1]  Gang Li,et al.  The first view of δ Scuti and γ Doradus stars with the TESS mission , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars – IV. Periodic variables in the APOGEE survey , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  J. Jackiewicz,et al.  Properties of 249 δ Scuti Variable Star Candidates Observed During the NASA K2 Mission , 2019, Front. Astron. Space Sci..

[4]  J. Prieto,et al.  Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS , 2019, The Astrophysical Journal.

[5]  T. Bedding,et al.  The period–luminosity relation for δ Scuti stars using Gaia DR2 parallaxes , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Prieto,et al.  ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  T. Bedding,et al.  Gaia-derived luminosities ofKeplerA/F stars and the pulsator fraction across the δ Scuti instability strip , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  C. Kochanek,et al.  An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  T Jayasinghe,et al.  The ASAS-SN catalogue of variable stars III: variables in the southern TESS continuous viewing zone , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  Noriyuki Matsunaga,et al.  Old-Aged Primary Distance Indicators , 2018, Space Science Reviews.

[11]  B. Stalder,et al.  The ATLAS All-Sky Stellar Reference Catalog , 2018, The Astrophysical Journal.

[12]  T Jayasinghe,et al.  The ASAS-SN Catalog of Variable Stars II: Uniform Classification of 412,000 Known Variables , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  C. Chiappini,et al.  Rediscovering Our Galaxy , 2018 .

[14]  Gregory M. Green,et al.  dustmaps: A Python interface for maps of interstellar dust , 2018, J. Open Source Softw..

[15]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[16]  U. Munari,et al.  The GALAH Survey: Second Data Release , 2018, 1804.06041.

[17]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.

[18]  D. Bowman,et al.  Characterising the observational properties of δ Sct stars in the era of space photometry from the Kepler mission , 2018, 1802.05433.

[19]  D. Bowman Amplitude Modulation of Pulsation Modes in Delta Scuti Stars , 2017 .

[20]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[21]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[22]  B. Smalley,et al.  Eclipsing binary stars with a δ Scuti component , 2017, 1705.06480.

[23]  Sergey E. Koposov,et al.  The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era , 2016, 1609.02914.

[24]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[25]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[26]  Timothy D. Morton,et al.  isochrones: Stellar model grid package , 2015 .

[27]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[28]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[29]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[30]  I. Skillen,et al.  High-frequency A-type pulsators discovered using SuperWASP , 2014, 1401.3199.

[31]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[32]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[33]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[34]  P. Protopapas,et al.  STATISTICAL PROPERTIES OF GALACTIC δ SCUTI STARS: REVISITED , 2013, 1303.1031.

[35]  Xiaotong Feng,et al.  The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: The Fourth and Fifth Data Releases , 2018, The Astrophysical Journal Supplement Series.

[36]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[37]  L. Balona,et al.  Kepler observations of δ Scuti stars , 2011 .

[38]  D. Mcnamara DELTA SCUTI, SX PHOENICIS, AND RR LYRAE STARS IN GALAXIES AND GLOBULAR CLUSTERS , 2011 .

[39]  V. Ripepi,et al.  The Kepler characterization of the variability among A- and F-type stars I. General overview , 2011, 1107.0335.

[40]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[41]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[42]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[43]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[44]  P. François,et al.  On the metallicity gradient of the Galactic disk , 2009, 0906.3140.

[45]  M. Zechmeister,et al.  The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.

[46]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[47]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[48]  Michel Breger,et al.  Period04 User Guide , 2005 .

[49]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[50]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[51]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[52]  D. H. McNamara,et al.  LUMINOSITIES OF SX PHOENICIS, LARGE-AMPLITUDE DELTA SCUTI, AND RR LYRAE STARS , 1997 .

[53]  D. H. McNamara,et al.  Period-Luminosity Relations of SX Phoenicis Stars , 1995 .

[54]  A. Sandage The Oosterhoff Period-Metallicity Relation for RR Lyrae Stars at the Blue Fundamental Edge of the Instability Strip. I. , 1993 .

[55]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[56]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[57]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[58]  R. Stellingwerf,et al.  Pulsation in the lower Cepheid strip. I. Linear survey. , 1979 .

[59]  M. Breger DELTA SCUTI AND RELATED STARS. , 1979 .

[60]  J. Bregman,et al.  Period--luminosity--color relations and pulsation modes of pulsating variable stars , 1975 .

[61]  Nicholas A. Walton,et al.  Setting the scene for Gaia and LAMOST , 2014 .

[62]  R. Cohen,et al.  SX Phoenicis period–luminosity relations and the blue straggler connection , 2012 .

[63]  M. Breger,et al.  delta Scuti and related stars: Analysis of the R00 Catalogue , 2001 .