The ASAS-SN catalogue of variable stars VI: an all-sky sample of δ Scuti stars
暂无分享,去创建一个
J. Prieto | C. Kochanek | T. Holoien | B. Shappee | K. Stanek | T. Jayasinghe | T. Thompson | S. Otero | D. Will | M. Fausnaugh | P. Vallely | O. Pejcha | N. Hurst
[1] Gang Li,et al. The first view of δ Scuti and γ Doradus stars with the TESS mission , 2019, Monthly Notices of the Royal Astronomical Society.
[2] J. Prieto,et al. The ASAS-SN catalogue of variable stars – IV. Periodic variables in the APOGEE survey , 2019, Monthly Notices of the Royal Astronomical Society.
[3] J. Jackiewicz,et al. Properties of 249 δ Scuti Variable Star Candidates Observed During the NASA K2 Mission , 2019, Front. Astron. Space Sci..
[4] J. Prieto,et al. Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS , 2019, The Astrophysical Journal.
[5] T. Bedding,et al. The period–luminosity relation for δ Scuti stars using Gaia DR2 parallaxes , 2019, Monthly Notices of the Royal Astronomical Society.
[6] J. Prieto,et al. ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT , 2019, Monthly Notices of the Royal Astronomical Society.
[7] T. Bedding,et al. Gaia-derived luminosities ofKeplerA/F stars and the pulsator fraction across the δ Scuti instability strip , 2019, Monthly Notices of the Royal Astronomical Society.
[8] C. Kochanek,et al. An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS , 2018, Monthly Notices of the Royal Astronomical Society.
[9] T Jayasinghe,et al. The ASAS-SN catalogue of variable stars III: variables in the southern TESS continuous viewing zone , 2018, Monthly Notices of the Royal Astronomical Society.
[10] Noriyuki Matsunaga,et al. Old-Aged Primary Distance Indicators , 2018, Space Science Reviews.
[11] B. Stalder,et al. The ATLAS All-Sky Stellar Reference Catalog , 2018, The Astrophysical Journal.
[12] T Jayasinghe,et al. The ASAS-SN Catalog of Variable Stars II: Uniform Classification of 412,000 Known Variables , 2018, Monthly Notices of the Royal Astronomical Society.
[13] C. Chiappini,et al. Rediscovering Our Galaxy , 2018 .
[14] Gregory M. Green,et al. dustmaps: A Python interface for maps of interstellar dust , 2018, J. Open Source Softw..
[15] C. Bailer-Jones,et al. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.
[16] U. Munari,et al. The GALAH Survey: Second Data Release , 2018, 1804.06041.
[17] J. Prieto,et al. The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.
[18] D. Bowman,et al. Characterising the observational properties of δ Sct stars in the era of space photometry from the Kepler mission , 2018, 1802.05433.
[19] D. Bowman. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars , 2017 .
[20] Astrophysics,et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.
[21] Keivan G. Stassun,et al. The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.
[22] B. Smalley,et al. Eclipsing binary stars with a δ Scuti component , 2017, 1705.06480.
[23] Sergey E. Koposov,et al. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era , 2016, 1609.02914.
[24] Jieun Choi,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.
[25] Aaron Dotter,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.
[26] Timothy D. Morton,et al. isochrones: Stellar model grid package , 2015 .
[27] U. Munari,et al. The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.
[28] Annie C. Robin,et al. ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.
[29] Mark Clampin,et al. Transiting Exoplanet Survey Satellite , 2014, 1406.0151.
[30] I. Skillen,et al. High-frequency A-type pulsators discovered using SuperWASP , 2014, 1401.3199.
[31] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[32] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[33] D. Dragomir,et al. Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.
[34] P. Protopapas,et al. STATISTICAL PROPERTIES OF GALACTIC δ SCUTI STARS: REVISITED , 2013, 1303.1031.
[35] Xiaotong Feng,et al. The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: The Fourth and Fifth Data Releases , 2018, The Astrophysical Journal Supplement Series.
[36] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[37] L. Balona,et al. Kepler observations of δ Scuti stars , 2011 .
[38] D. Mcnamara. DELTA SCUTI, SX PHOENICIS, AND RR LYRAE STARS IN GALAXIES AND GLOBULAR CLUSTERS , 2011 .
[39] V. Ripepi,et al. The Kepler characterization of the variability among A- and F-type stars I. General overview , 2011, 1107.0335.
[40] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[41] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[42] A. Gimenez,et al. Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.
[43] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[44] P. François,et al. On the metallicity gradient of the Galactic disk , 2009, 0906.3140.
[45] M. Zechmeister,et al. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.
[46] Robert Barkhouser,et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.
[47] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[48] Michel Breger,et al. Period04 User Guide , 2005 .
[49] C. Alard. Image subtraction using a space-varying kernel , 2000 .
[50] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[51] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[52] D. H. McNamara,et al. LUMINOSITIES OF SX PHOENICIS, LARGE-AMPLITUDE DELTA SCUTI, AND RR LYRAE STARS , 1997 .
[53] D. H. McNamara,et al. Period-Luminosity Relations of SX Phoenicis Stars , 1995 .
[54] A. Sandage. The Oosterhoff Period-Metallicity Relation for RR Lyrae Stars at the Blue Fundamental Edge of the Instability Strip. I. , 1993 .
[55] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[56] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[57] B. F. Madore,et al. The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .
[58] R. Stellingwerf,et al. Pulsation in the lower Cepheid strip. I. Linear survey. , 1979 .
[59] M. Breger. DELTA SCUTI AND RELATED STARS. , 1979 .
[60] J. Bregman,et al. Period--luminosity--color relations and pulsation modes of pulsating variable stars , 1975 .
[61] Nicholas A. Walton,et al. Setting the scene for Gaia and LAMOST , 2014 .
[62] R. Cohen,et al. SX Phoenicis period–luminosity relations and the blue straggler connection , 2012 .
[63] M. Breger,et al. delta Scuti and related stars: Analysis of the R00 Catalogue , 2001 .