HYDRODYNAMIC SIMULATION OF NON-THERMAL PRESSURE PROFILES OF GALAXY CLUSTERS

Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

[1]  J. Hill,et al.  Cosmological constraints from moments of the thermal Sunyaev-Zel'dovich effect , 2012, 1205.5794.

[2]  S. Habib,et al.  DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS , 2011, 1112.5479.

[3]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[4]  R. Piffaretti,et al.  Total mass biases in X-ray galaxy clusters , 2008, 0808.1111.

[5]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[6]  D. Nagai,et al.  Effect of Internal Flows on Sunyaev-Zeldovich Measurements of Cluster Peculiar Velocities , 2002, astro-ph/0208308.

[7]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[8]  D. Nagai,et al.  EVOLUTION OF THE MERGER-INDUCED HYDROSTATIC MASS BIAS IN GALAXY CLUSTERS , 2011, 1112.3659.

[9]  A. Kravtsov,et al.  DEPENDENCE OF THE OUTER DENSITY PROFILES OF HALOS ON THEIR MASS ACCRETION RATE , 2014, 1401.1216.

[10]  Daisuke Nagai,et al.  WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS , 2013, 1306.3993.

[11]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[12]  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[13]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[14]  R. Sunyaev,et al.  Resonant scattering in galaxy clusters for anisotropic gas motions on various spatial scales , 2011, 1102.4098.

[15]  D. Nagai,et al.  BISPECTRUM OF THE SUNYAEV–ZEL'DOVICH EFFECT , 2012, 1203.6368.

[16]  Indian Institute of Science,et al.  Turbulent pressure support in the outer parts of galaxy clusters , 2011, 1109.1285.

[17]  D. Nagai,et al.  WEIGHING GALAXY CLUSTERS WITH GAS. II. ON THE ORIGIN OF HYDROSTATIC MASS BIAS IN ΛCDM GALAXY CLUSTERS , 2013, 1308.6589.

[18]  E. Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters – III. Removing the hydrostatic mass bias , 2014, 1507.04338.

[19]  A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.

[20]  H. Hoekstra,et al.  JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES , 2012, 1210.3689.

[21]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[22]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[23]  Turbulence in clusters of galaxies and X-ray line profiles , 2003, astro-ph/0310737.

[24]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[25]  D. Thompson,et al.  SEARCH FOR COSMIC-RAY-INDUCED GAMMA-RAY EMISSION IN GALAXY CLUSTERS , 2013, 1308.5654.

[26]  S. Ando,et al.  Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster , 2013, 1312.1493.

[27]  S. More,et al.  THE PSEUDO-EVOLUTION OF HALO MASS , 2012, 1207.0816.

[28]  R. Sunyaev,et al.  Quantifying properties of ICM inhomogeneities , 2012, 1210.6706.

[29]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[30]  August E. Evrard,et al.  Mass estimates of X-ray clusters , 1996 .

[31]  Wayne Hu,et al.  Sample Variance Considerations for Cluster Surveys , 2002 .

[32]  D. Burke,et al.  Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.

[33]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[34]  A. Finoguenov,et al.  LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM XMM-NEWTON AND SUBARU—TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT , 2010, 1001.0780.

[35]  Marcus Brüggen,et al.  Massive and refined - II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution , 2011 .

[36]  Validity of Hydrostatic Equilibrium in Galaxy Clusters from Cosmological Hydrodynamical Simulations , 2013, 1302.5172.

[37]  R. S. de Souza,et al.  On the influence of non-thermal pressure on the mass determination of galaxy clusters , 2009, 0911.0647.

[38]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[39]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[40]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[41]  Yoshiharu Namba,et al.  The ASTRO-H Mission , 2009, Astronomical Telescopes + Instrumentation.

[42]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.

[43]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.