Kinematics and Simulation for a High-Precision Parallel Kinematic Platform

To meet the high speed and high precision requirements of machining freeform workpieces, a 4-DOF parallel kinematic platform with the configuration of 4 actuated legs plus a passive leg is proposed in this paper. Inverse kinematics and the calibration algorithm are developed, and virtual prototype modeling and kinematic simulation using MSC/ADAMS are carried out. The simulation results exhibit that the proposed structure is capable of implementing the high-precision machining requirements of freeform parts.