Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.

The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.

[1]  Sudipto Guha,et al.  Fabrication of X-ray compatible microfluidic platforms for protein crystallization. , 2012, Sensors and actuators. B, Chemical.

[2]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[3]  Brian Nutter,et al.  A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources , 2015, Journal of synchrotron radiation.

[4]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[5]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[6]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[7]  C. David,et al.  A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering , 2015, Scientific Reports.

[8]  Georg Weidenspointner,et al.  Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements , 2011, Nature Photonics.

[9]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[10]  Kunio Hirata,et al.  Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL , 2014, Nature Methods.

[11]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[12]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[13]  J. Berger,et al.  A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions , 2015, Acta crystallographica. Section D, Biological crystallography.

[14]  Nicholas K. Sauter,et al.  Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array , 2015, Acta crystallographica. Section D, Biological crystallography.

[15]  Christoph Mueller-Dieckmann,et al.  In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF , 2015, Acta crystallographica. Section D, Biological crystallography.

[16]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[17]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[18]  Nicholas K. Sauter,et al.  Taking Snapshots of Photosynthetic Water Oxidation Using Femtosecond X-ray Diffraction and Spectroscopy , 2014, Nature Communications.

[19]  Nicholas K. Sauter,et al.  Diffraction-geometry refinement in the DIALS framework , 2016, Acta crystallographica. Section D, Structural biology.

[20]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[21]  Anton Barty,et al.  OnDA: online data analysis and feedback for serial X-ray imaging1 , 2016, Journal of applied crystallography.

[22]  A. Zarrine-Afsar,et al.  Crystallography on a chip. , 2012, Acta crystallographica. Section D, Biological crystallography.

[23]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[24]  F. Yang,et al.  Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. , 1996, Journal of molecular biology.

[25]  P. Baum,et al.  All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples , 2014 .

[26]  A. Kuczewski,et al.  Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. , 2016, Structure.

[27]  Yiping Feng,et al.  Goniometer-based femtosecond crystallography with X-ray free electron lasers , 2014, Proceedings of the National Academy of Sciences.

[28]  Martin Warmer,et al.  Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering , 2016, Journal of applied crystallography.

[29]  Nicholas K. Sauter,et al.  A revised partiality model and post-refinement algorithm for X-ray free-electron laser data , 2015, Acta crystallographica. Section D, Biological crystallography.

[30]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[31]  Nicholas K. Sauter,et al.  On the release of cppxfel for processing X-ray free-electron laser images1 , 2016, Journal of applied crystallography.

[32]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[33]  Anton Barty,et al.  Fixed-target protein serial microcrystallography with an x-ray free electron laser , 2014, Scientific Reports.

[34]  R. Pahl,et al.  Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex using single-crystal UV/Vis microspectrophotometry. , 2007, Journal of synchrotron radiation.

[35]  Aidin R. Balo,et al.  Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography , 2015, Structural dynamics.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Jesse B. Hopkins,et al.  Figures and figure supplements Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography , 2016 .

[38]  T. Poulos,et al.  Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer , 2016, Proceedings of the National Academy of Sciences.

[39]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[40]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[41]  Marcin Sikorski,et al.  The X-ray Pump–Probe instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[42]  D. Stuart,et al.  Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data , 2015, Nature Communications.

[43]  M. Messerschmidt,et al.  The RATIO method for time-resolved Laue crystallography. , 2009, Journal of synchrotron radiation.

[44]  Michael L. Quillin,et al.  Structural determinants of the stretching frequency of CO bound to myoglobin. , 1994, Biochemistry.

[45]  W. DeGrado,et al.  High-density grids for efficient data collection from multiple crystals , 2016, Acta crystallographica. Section D, Structural biology.

[46]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[47]  D. Stuart,et al.  TakeTwo: an indexing algorithm suited to still images with known crystal parameters , 2016, Acta crystallographica. Section D, Structural biology.

[48]  S. Sligar,et al.  High-level expression of sperm whale myoglobin in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Nicholas K. Sauter,et al.  Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis , 2015, Nature.

[50]  R. Owen,et al.  Revealing low-dose radiation damage using single-crystal spectroscopy , 2011, Journal of synchrotron radiation.