Implementing Relevance Feedback in the Bayesian Network Retrieval Model

Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.

[1]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[2]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[3]  Robert M. Fung,et al.  Applying Bayesian networks to information retrieval , 1995, CACM.

[4]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[5]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[6]  W. Bruce Croft,et al.  Efficient probabilistic Inference for text retrieval , 1991, RIAO.

[7]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[8]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[9]  Berthier A. Ribeiro-Neto,et al.  Link-based and content-based evidential information in a belief network model , 2000, SIGIR '00.

[10]  Luis M. de Campos,et al.  The BNR model: foundations and performance of a Bayesian network-based retrieval model , 2003, Int. J. Approx. Reason..

[11]  Robert M. Losee,et al.  Feedback in Information Retrieval. , 1996 .

[12]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[13]  Berthier A. Ribeiro-Neto,et al.  A belief network model for IR , 1996, SIGIR '96.

[14]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[15]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[16]  Luis M. de Campos,et al.  A Layered Bayesian Network Model for Document Retrieval , 2002, ECIR.

[17]  Luis M. de Campos,et al.  Building Bayesian network-based information retrieval systems , 2000, Proceedings 11th International Workshop on Database and Expert Systems Applications.

[18]  Luis M. de Campos,et al.  Query Expansion in Information Retrieval Systems using a Bayesian Network-Based Thesaurus , 1998, UAI.

[19]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[20]  W. Bruce Croft,et al.  Inference networks for document retrieval , 1989, SIGIR '90.