Fully Packaged Multichannel Cryogenic Quantum Memory Module

Realizing a quantum network will require long-lived quantum memories with optical interfaces incorporated into a scalable architecture. Color centers in diamond have emerged as a promising memory modality due to their optical properties and compatibility with scalable integration. However, developing a scalable color center memory module requires significant advances in the areas of heterogeneous integration and cryogenically compatible packaging. Here we report on a cryogenically stable and network compatible module for diamond color center quantum memory use. This quantum memory module is a significant development towards advanced quantum networking applications such as distributed sensing and processing.

[1]  J. Carolan,et al.  Ultra-low loss quantum photonic circuits integrated with single quantum emitters , 2022, Nature communications.

[2]  M. Lukin,et al.  Robust multi-qubit quantum network node with integrated error detection , 2022, Science.

[3]  J. Renema,et al.  High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength , 2022, Optica Advanced Photonics Congress 2022.

[4]  H. Weinfurter,et al.  Entangling single atoms over 33 km telecom fibre , 2021, Nature.

[5]  D. P. Nadlinger,et al.  An elementary quantum network of entangled optical atomic clocks , 2021, Nature.

[6]  N. T. Son,et al.  Five-second coherence of a single spin with single-shot readout in silicon carbide , 2021, Science advances.

[7]  G. Roelkens,et al.  High-pulse-energy III-V-on-silicon-nitride mode-locked laser , 2021, APL Photonics.

[8]  Noel H. Wan,et al.  Quantum networks based on color centers in diamond , 2021, Journal of Applied Physics.

[9]  Marianneza Chatzipetrou,et al.  A Miniature Bio-Photonics Companion Diagnostics Platform for Reliable Cancer Treatment Monitoring in Blood Fluids , 2021, Sensors.

[10]  Laura dos Santos Martins,et al.  Realization of a multinode quantum network of remote solid-state qubits , 2021, Science.

[11]  Gerhard Rempe,et al.  A quantum-logic gate between distant quantum-network modules , 2021, Science.

[12]  D. Katramatos,et al.  An elementary 158 km long quantum network connecting room temperature quantum memories , 2021, 2101.12742.

[13]  S. Grandi,et al.  Telecom-heralded entanglement between multimode solid-state quantum memories , 2021, Nature.

[14]  J. Chiaverini,et al.  Integrated multi-wavelength control of an ion qubit , 2020, Nature.

[15]  T. Ohshima,et al.  Universal coherence protection in a solid-state spin qubit , 2020, Science.

[16]  Stephanie Wehner,et al.  A quantum router architecture for high-fidelity entanglement flows in quantum networks , 2020, npj Quantum Information.

[17]  Angela Sara Cacciapuoti,et al.  Towards a Distributed Quantum Computing Ecosystem , 2020, IET Quantum Commun..

[18]  K. Mehta,et al.  Integrated optical multi-ion quantum logic , 2020, Nature.

[19]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[20]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[21]  Jonathan M. Kindem,et al.  Control and single-shot readout of an ion embedded in a nanophotonic cavity , 2019, Nature.

[22]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[23]  Dirk Englund,et al.  Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond , 2018, Applied Physics Letters.

[24]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[25]  Jonathan M. Kindem,et al.  Nanophotonic rare-earth quantum memory with optically controlled retrieval , 2017, Science.

[26]  Dirk Englund,et al.  Rectangular Photonic Crystal Nanobeam Cavities in Bulk Diamond , 2017, 1704.07918.

[27]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[28]  N. Harris,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2015, Nature Communications.

[29]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[30]  U. Levy,et al.  Nanoscale light–matter interactions in atomic cladding waveguides , 2012, Nature Communications.

[31]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[32]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[33]  David J. Starling,et al.  Integrating Nearly-Indistinguishable Quantum Emitters onto a Photonic Interposer , 2023, Conference on Lasers and Electro-Optics.

[34]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.