Patterned Wettability Transition by Photoelectric Cooperative and Anisotropic Wetting for Liquid Reprography

[1]  Shu Yang,et al.  From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  Joong Tark Han,et al.  Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. , 2006, Journal of the American Chemical Society.

[3]  S. Elliott,et al.  Electrowetting of nonwetting liquids and liquid marbles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  Dong Yun Lee,et al.  UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. , 2007, Journal of the American Chemical Society.

[5]  Hideo Notsu,et al.  Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography , 2005 .

[6]  Rabah Boukherroub,et al.  Wettability Switching Techniques on Superhydrophobic Surfaces , 2007, Nanoscale Research Letters.

[7]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[8]  A. Fujishima,et al.  Water ultrarepellency induced by nanocolumnar ZnO surface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[9]  H. Verheijen,et al.  REVERSIBLE ELECTROWETTING AND TRAPPING OF CHARGE : MODEL AND EXPERIMENTS , 1999, cond-mat/9908328.

[10]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[11]  Hiroshi Toshiyoshi,et al.  Light actuation of liquid by optoelectrowetting , 2003 .

[12]  W. Dai,et al.  An Electrowetting Model for Rough Surfaces Under Low Voltage , 2008 .

[13]  F. Shi,et al.  Reversible pH‐Responsive Surface: From Superhydrophobicity to Superhydrophilicity , 2005 .

[14]  S. Garimella,et al.  Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[16]  Leibler,et al.  Switchable tackiness and wettability of a liquid crystalline polymer , 1999, Science.

[17]  Marcus Müller,et al.  Two-level structured self-adaptive surfaces with reversibly tunable properties. , 2003, Journal of the American Chemical Society.

[18]  H. Minoura,et al.  Photoelectrochemical sensitisation of ZnO–tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly , 2000 .

[19]  S. Lau,et al.  Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. , 2005, The journal of physical chemistry. B.

[20]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[21]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[22]  Ching-ping Wong,et al.  Electrowetting of aligned carbon nanotube films. , 2006, The journal of physical chemistry. B.

[23]  J. Youngblood,et al.  Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma , 1999 .

[24]  H. Otsuka,et al.  Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  Jason Heikenfeld,et al.  Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[26]  Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. , 2008, Analytical chemistry.

[27]  M. Anderson,et al.  Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing , 1992 .

[28]  Vaibhav Bahadur,et al.  Electrowetting-based control of static droplet states on rough surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[29]  S. Kulkarni,et al.  Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. , 2008, Nano letters.

[30]  Shinichiro Nakamura,et al.  Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface. , 2006, Angewandte Chemie.

[31]  Lei Jiang,et al.  Photoresponsive surfaces with controllable wettability , 2007 .

[32]  Steve Simon,et al.  Reserve battery architecture based on superhydrophobic nanostructured surfaces , 2005, Bell Labs Technical Journal.

[33]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[34]  Smart photochromic gratings with switchable wettability realized by green-light interferometry , 2006 .

[35]  Rabah Boukherroub,et al.  Reversible electrowetting on superhydrophobic silicon nanowires. , 2007, Nano letters.

[36]  Jau-Ye Shiu,et al.  Addressable Protein Patterning via Switchable Superhydrophobic Microarrays , 2007 .

[37]  Costas Fotakis,et al.  Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  Nikhil Koratkar,et al.  Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. , 2007, Nano letters.

[39]  Kourosh Kalantar-zadeh,et al.  Electrowetting of superhydrophobic ZnO nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[40]  A. Fujishima,et al.  Dye-sensitizing effect of TiOPc thin film on n-TiO2 (001) surface , 1996 .

[41]  A. Fujishima,et al.  Superhydrophobic TiO2 Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic-Superhydrophilic Patterning , 2007 .

[42]  Wilfred Chen,et al.  Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity , 2008 .

[43]  D. Beebe,et al.  Surface-directed liquid flow inside microchannels. , 2001, Science.

[44]  Rohit Rosario,et al.  Lotus Effect Amplifies Light-Induced Contact Angle Switching , 2004 .

[45]  Devens Gust,et al.  Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. , 2006, Nano letters.

[46]  H. Fuchs,et al.  Nanoscopic channel lattices with controlled anisotropic wetting , 2000, Nature.

[47]  H. Böttcher,et al.  Investigation into the photo-induced change in wettability of hydrophobized TiO2 films , 2008 .

[48]  A. Athanassiou,et al.  Reversible Wettability Changes in Colloidal TiO2 Nanorod Thin-Film Coatings under Selective UV Laser Irradiation , 2008 .

[49]  K. Tadanaga,et al.  Superhydrophobic−Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol−Gel Method , 2000 .

[50]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[51]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[52]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.

[53]  Mwj Menno Prins,et al.  Fluid control in multichannel structures by electrocapillary pressure. , 2001, Science.

[54]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[55]  Nagesh R. Basavanhally,et al.  Superhydrophobic membranes with electrically controllable permeability and their application to “smart” microbatteries , 2008 .

[56]  L. Jiang,et al.  Multiresponsive Surfaces Change Between Superhydrophilicity and Superhydrophobicity , 2007 .

[57]  Manjeet Dhindsa,et al.  Electrowetting on Superhydrophobic Surfaces: Present Status and Prospects , 2008 .

[58]  Evelyn N Wang,et al.  Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[59]  W. Cai,et al.  Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. , 2005, Journal of colloid and interface science.

[60]  Michael I. Newton,et al.  Electrowetting on superhydrophobic SU-8 patterned surfaces , 2006 .

[61]  K. Hashimoto,et al.  Reversible Control of Wettability of a TiO2 Surface by Introducing Surface Roughness , 2005 .

[62]  Fuyou Li,et al.  Reversible Wettability Switch of Large Area TiO2 Films , 2005 .

[63]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .