Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects.

In the present work, comprehensive experimental and numerical investigations on the effects of ultrasound frequency and acoustic power on sonoluminescence (SL) and H(2)O(2) yields have been carried out. The multibubble SL and H(2)O(2) yields have been examined for four frequencies (213, 355, 647 and 1056 kHz) and over a wide range of acoustic powers. The observed experimental results have been discussed with respect to single bubble dynamics and the number of active cavitation bubbles.

[1]  M. Ashokkumar,et al.  The effect of surface active solutes on bubbles exposed to ultrasound. , 2001, Advances in colloid and interface science.

[2]  A. Henglein,et al.  Chemical action of pulsed ultrasound: observation of an unprecedented intensity effect. , 1990 .

[3]  N. A. Tsochatzidis,et al.  Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique , 2001 .

[4]  M. Ashokkumar,et al.  The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes. , 2005, The journal of physical chemistry. B.

[5]  M. Entezari,et al.  Effect of frequency on sonochemical reactions. I: Oxidation of iodide , 1994 .

[6]  Todd F. Dupont,et al.  Sonoluminescing Air Bubbles Rectify Argon , 1996, chao-dyn/9605003.

[7]  M. Ashokkumar,et al.  Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. , 2004, Journal of the American Chemical Society.

[8]  N. A. Tsochatzidis,et al.  Characterisation of the acoustic cavitation cloud by two laser techniques. , 1999, Ultrasonics sonochemistry.

[9]  K. Suslick,et al.  Molecular emission from single-bubble sonoluminescence , 2000, Nature.

[10]  P. Mulvaney,et al.  Sonoluminescence from Aqueous Alcohol and Surfactant Solutions , 1997 .

[11]  D. Lohse,et al.  Does water vapor prevent upscaling sonoluminescence? , 2000, Physical review letters.

[12]  Linda K. Weavers,et al.  CHEMICAL BUBBLE DYNAMICS AND QUANTITATIVE SONOCHEMISTRY , 1998 .

[13]  T. Mason,et al.  Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing , 2002 .

[14]  M. Ashokkumar,et al.  Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. , 2005, Journal of the American Chemical Society.

[15]  K. Suslick,et al.  The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation , 2002, Nature.

[16]  Wu,et al.  Sensitivity of sonoluminescence to experimental parameters. , 1994, Physical review letters.

[17]  Inez Hua,et al.  Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry , 2001 .

[18]  M. Ashokkumar,et al.  The Effect of pH on Multibubble Sonoluminescence from Aqueous Solutions Containing Simple Organic Weak Acids and Bases , 1999 .

[19]  A. Henglein,et al.  Sonochemistry and sonoluminescence: effects of external pressure , 1993 .

[20]  Aniruddha B. Pandit,et al.  Mapping of sonochemical reactors: Review, analysis, and experimental verification , 2002 .

[21]  L. Crum,et al.  Correlation between sonoluminescence, sonochemistry and cavitation noise spectra. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  G Portenlänger,et al.  The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. , 1997, Ultrasonics sonochemistry.

[23]  M. Ashokkumar,et al.  Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound , 2002 .

[24]  T. Tuziuti,et al.  Optimum bubble temperature for the sonochemical production of oxidants. , 2004, Ultrasonics.

[25]  M. Ashokkumar,et al.  Single bubble sonoluminescence--a chemist's overview. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Kenneth S. Suslick,et al.  Sonoluminescence temperatures during multi-bubble cavitation , 1999, Nature.

[27]  Yves Lion,et al.  Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping , 1989 .

[28]  K. Yasui Influence of ultrasonic frequency on multibubble sonoluminescence. , 2002, The Journal of the Acoustical Society of America.

[29]  S. Putterman,et al.  Sonoluminescence from Single Bubbles in Nonaqueous Liquids: New Parameter Space for Sonochemistry , 1995 .

[30]  T. Leighton The Acoustic Bubble , 1994 .

[31]  S. Putterman,et al.  Temperature and pressure dependence of sonoluminescence. , 2000, Physical review letters.

[32]  Lawrence A. Crum,et al.  Sonoluminescence produced by ‘‘stable’’ cavitation , 1985 .

[33]  A. Szeri,et al.  Water vapour, sonoluminescence and sonochemistry , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  C. Sehgal,et al.  Threshold intensities and kinetics of sonoreaction of thymine in aqueous solutions at low ultrasonic intensities , 1981 .

[35]  M. Ashokkumar,et al.  Multibubble sonoluminescence from aqueous solutions containing mixtures of surface active solutes , 2003 .

[36]  K. Yasui Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold , 1998 .

[37]  P. Gogate,et al.  Cavity cluster approach for quantification of cavitational intensity in sonochemical reactors. , 2003, Ultrasonics sonochemistry.

[38]  Kenneth S. Suslick,et al.  Sonoluminescence from nonaqueous liquids: emission from small molecules , 1989 .

[39]  B. E. Noltingk,et al.  Cavitation produced by Ultrasonics , 1950 .

[40]  J. Luche,et al.  Unexpected frequency effects on the rate of oxidative processes induced by ultrasound , 1992 .