Contrasting Contributions of Endoplasmic Reticulum and Mitochondria to Ca2+ Handling in Neurons

This issue of The Journal includes an important pair of articles ([Albrecht et al. 2001][1]; [Hongpaisan et al. 2001][2]) that provide a comprehensive analysis of ER contributions to the handling of depolarization-induced Ca2+ loads in bullfrog sympathetic ganglion neurons. The articles include

[1]  R. Leapman,et al.  Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons II , 2001, The Journal of general physiology.

[2]  D. Friel,et al.  Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons I , 2001, The Journal of general physiology.

[3]  E. Barrett,et al.  Stimulation-Evoked Increases in Cytosolic [Ca2+] in Mouse Motor Nerve Terminals Are Limited by Mitochondrial Uptake and Are Temperature-Dependent , 2000, The Journal of Neuroscience.

[4]  B. Hille,et al.  Mitochondria Shape Hormonally Induced Cytoplasmic Calcium Oscillations and Modulate Exocytosis* , 2000, The Journal of Biological Chemistry.

[5]  G. Hajnóczky,et al.  Calcium Signal Transmission between Ryanodine Receptors and Mitochondria* , 2000, The Journal of Biological Chemistry.

[6]  D. Friel,et al.  Dissection of Mitochondrial Ca2+ Uptake and Release Fluxes in Situ after Depolarization-Evoked [Ca2+]i Elevations in Sympathetic Neurons , 2000, The Journal of general physiology.

[7]  J. García-Sancho,et al.  Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion , 2000, Nature Cell Biology.

[8]  T. Pozzan,et al.  Mitochondria as biosensors of calcium microdomains. , 1999, Cell calcium.

[9]  G. David Mitochondrial Clearance of Cytosolic Ca2+ in Stimulated Lizard Motor Nerve Terminals Proceeds without Progressive Elevation of Mitochondrial Matrix [Ca2+] , 1999, The Journal of Neuroscience.

[10]  D. Friel,et al.  Depolarization-Induced Mitochondrial Ca Accumulation in Sympathetic Neurons: Spatial and Temporal Characteristics , 1999, The Journal of Neuroscience.

[11]  K. Gunter,et al.  The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. , 1998, Biochimica et biophysica acta.

[12]  E. Barrett,et al.  Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals , 1998, The Journal of physiology.

[13]  K. Baimbridge,et al.  Calcium homeostatic mechanisms operating in cultured postnatal rat hippocampal neurones following flash photolysis of nitrophenyl‐EGTA , 1997, The Journal of physiology.

[14]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[15]  B. Hille,et al.  Mitochondrial Participation in the Intracellular Ca2+ Network , 1997, The Journal of cell biology.

[16]  R. White,et al.  Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  E. Stuenkel,et al.  Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. , 1994, The Journal of physiology.

[18]  Samuel Thayer,et al.  Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  S. Hua,et al.  Characteristics of Ca2+ release induced by Ca2+ influx in cultured bullfrog sympathetic neurones. , 1993, The Journal of physiology.

[20]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.