Bayesian Inference on the Generalized Gamma Distribution Based on Generalized Order Statistics

In this paper, the confidence intervals for the generalized gamma distribution parameters are derived based on the Bayesian approach using the informative and non-informative priors and the classical approach, via the Asymptotic Maximum likelihood estimation, based on the generalized order statistics. For measuring the performance of the Bayesian approach comparing to the classical approach, the confidence intervals of the unknown parameters have been studied, via Monte Carlo simulations and some real data. The simulation results indicated that the confidence intervals based on the Bayesian approach compete and outperform those based on the classical approach.

[1]  Kenneth S. Kaminsky A characteristic property of the exponential distribution , 1982 .

[2]  M. S. Maswadah Structural inference on the generalized gamma distribution based on type-II progressively censored sample , 1991 .

[3]  J. Lawless Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .

[4]  Mohammad Ahsanullah,et al.  Generalized order statistics from exponential distribution , 2000 .

[5]  Udo Kamps,et al.  A concept of generalized order statistics , 1995 .

[6]  Laurent Bordes Non-parametric estimation under progressive censoring , 2004 .

[7]  Bhaswati Mukherjee,et al.  A Bayesian study for the comparison of generalized gamma model with its components , 2010 .

[8]  Piotr Kulczycki,et al.  PARAMETER IDENTIFICATION USING BAYES AND KERNEL APPROACHES , 1999 .

[9]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[10]  J. Y. Wong,et al.  Readily obtaining the maximum likelihood estimates of the three parameters of the generalized gamma distribution of Stacy and Mihram , 1993 .

[11]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[12]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[13]  Ping-Huang Huang,et al.  ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION USING IT’S CHARACTERIZATION , 2006 .

[14]  H. Leon Harter,et al.  Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples , 1967 .

[15]  Ding-Geng Chen,et al.  A Note on the Maximum Likelihood Estimation for the Generalized Gamma Distribution Parameters under Progressive Type-II Censoring , 2009 .

[16]  Ehsan S. Soofi,et al.  Information measures for generalized gamma family , 2007 .

[17]  Chin-Yuan Hu,et al.  On a Characterization of the Gamma Distribution: The Independence of the Sample Mean and the Sample Coefficient of Variation , 1999 .

[18]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[19]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[20]  M. Maswadah Kernel Inference on the Inverse Weibull Distribution , 2006 .

[21]  T. J. DiCiccio Approximate inference for the generalized gamma distribution , 1987 .

[22]  Jorge Navarro,et al.  Kernel density estimation using weighted data , 1998 .

[23]  J. T. Webster,et al.  A Method for Discriminating Between Failure Density Functions Used In Reliability Predictions , 1965 .

[24]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[25]  D. R. Wingo Computing Maximum-Likelihood Parameter Estimates of the Generalized Gamma Distribution by Numerical Root Isolation , 1987, IEEE Transactions on Reliability.

[26]  Lee J. Bain,et al.  Inferential Procedures for the Generalized Gamma Distribution , 1970 .

[27]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[28]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .