Bayesian Inference on the Generalized Gamma Distribution Based on Generalized Order Statistics
暂无分享,去创建一个
[1] Kenneth S. Kaminsky. A characteristic property of the exponential distribution , 1982 .
[2] M. S. Maswadah. Structural inference on the generalized gamma distribution based on type-II progressively censored sample , 1991 .
[3] J. Lawless. Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .
[4] Mohammad Ahsanullah,et al. Generalized order statistics from exponential distribution , 2000 .
[5] Udo Kamps,et al. A concept of generalized order statistics , 1995 .
[6] Laurent Bordes. Non-parametric estimation under progressive censoring , 2004 .
[7] Bhaswati Mukherjee,et al. A Bayesian study for the comparison of generalized gamma model with its components , 2010 .
[8] Piotr Kulczycki,et al. PARAMETER IDENTIFICATION USING BAYES AND KERNEL APPROACHES , 1999 .
[9] Alain Dussauchoy,et al. Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..
[10] J. Y. Wong,et al. Readily obtaining the maximum likelihood estimates of the three parameters of the generalized gamma distribution of Stacy and Mihram , 1993 .
[11] Ian Abramson. On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .
[12] Jerald F. Lawless,et al. Statistical Models and Methods for Lifetime Data. , 1983 .
[13] Ping-Huang Huang,et al. ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE GENERALIZED GAMMA DISTRIBUTION USING IT’S CHARACTERIZATION , 2006 .
[14] H. Leon Harter,et al. Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples , 1967 .
[15] Ding-Geng Chen,et al. A Note on the Maximum Likelihood Estimation for the Generalized Gamma Distribution Parameters under Progressive Type-II Censoring , 2009 .
[16] Ehsan S. Soofi,et al. Information measures for generalized gamma family , 2007 .
[17] Chin-Yuan Hu,et al. On a Characterization of the Gamma Distribution: The Independence of the Sample Mean and the Sample Coefficient of Variation , 1999 .
[18] E. Stacy. A Generalization of the Gamma Distribution , 1962 .
[19] Gordon Johnston,et al. Statistical Models and Methods for Lifetime Data , 2003, Technometrics.
[20] M. Maswadah. Kernel Inference on the Inverse Weibull Distribution , 2006 .
[21] T. J. DiCiccio. Approximate inference for the generalized gamma distribution , 1987 .
[22] Jorge Navarro,et al. Kernel density estimation using weighted data , 1998 .
[23] J. T. Webster,et al. A Method for Discriminating Between Failure Density Functions Used In Reliability Predictions , 1965 .
[24] R. Prentice. A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .
[25] D. R. Wingo. Computing Maximum-Likelihood Parameter Estimates of the Generalized Gamma Distribution by Numerical Root Isolation , 1987, IEEE Transactions on Reliability.
[26] Lee J. Bain,et al. Inferential Procedures for the Generalized Gamma Distribution , 1970 .
[27] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[28] Jee Soo Kim. Parameter Estimation in Reliability and Life Span Models , 1991 .