Amplitude estimation using IEEE-STD-1057 three-parameter sine wave fit: Statistical distribution, bias and variance
暂无分享,去创建一个
[1] T. E. Linnenbrink. Waveform recorder testing: IEEE standard 1057 and You , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.
[2] Kui-Fu Chen,et al. Four-parameter sine wave fitting by Gram–Schmidt orthogonalization , 2008 .
[3] István Kollár,et al. Improved determination of the best fitting sine wave in ADC testing , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).
[4] F. Corrêa Alegria. Bias of amplitude estimation using three-parameter sine fitting in the presence of additive noise , 2009 .
[5] J. Blair. Sine-fitting software for IEEE Standards 1057 and 1241 , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).
[6] Petre Stoica,et al. On biased estimators and the unbiased Cramér-Rao lower bound , 1990, Signal Process..
[7] P. J. Green,et al. Overview of IEEE-STD-1241 "standard for terminology and test methods for analog-to-digital converters" , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).
[8] Björn E. Ottersten,et al. The evil of superefficiency , 1996, Signal Process..
[9] Peter Händel,et al. Parameter Estimation Employing a Dual-Channel Sine-Wave Model Under a Gaussian Assumption , 2008, IEEE Transactions on Instrumentation and Measurement.
[10] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[11] Peter Händel,et al. Multiple-tone estimation by IEEE standard 1057 and the expectation-maximization algorithm , 2005, IEEE Transactions on Instrumentation and Measurement.
[12] Rik Pintelon,et al. An improved sine-wave fitting procedure for characterizing data acquisition channels , 1995 .
[13] P. Peebles. Probability, Random Variables and Random Signal Principles , 1993 .
[14] S. O. Rice,et al. Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..
[15] Peter Händel,et al. Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm , 2000, IEEE Trans. Instrum. Meas..
[16] István Kollár,et al. Four-parameter fitting of sine wave testing result: iteration and convergence , 2004, Comput. Stand. Interfaces.
[17] A. Cruz Serra,et al. A new four parameter sine fitting technique , 2004 .
[18] Peter Händel,et al. IEEE Standard 1057, Crame/spl acute/r-Rao bound and the parsimony principle , 2006, IEEE Transactions on Instrumentation and Measurement.
[19] T.E. Linnenbrink,et al. IEEE TC-10: Update 2006 , 2006, 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings.
[20] Amerigo Trotta,et al. Fast and accurate ADC testing via an enhanced sine wave fitting algorithm , 1996 .
[21] Kui-Fu Chen,et al. Sine wave fitting to short records initialized with the frequency retrieved from Hanning windowed FFT spectrum , 2009 .
[22] Peter J. Kootsookos,et al. Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..
[23] A. Cruz Serra,et al. Low frequency impedance measurement using sine-fitting , 2004 .
[24] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[25] Allan Steinhardt,et al. Thresholds in frequency estimation , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[26] I. Kollar,et al. Standard framework for IEEE-STD-1241 in MATLAB [ADC testing] , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).