Amplitude estimation using IEEE-STD-1057 three-parameter sine wave fit: Statistical distribution, bias and variance

Abstract There has been a recent interest on the performance of amplitude estimation employing a coherently sampled sinusoidal model to noisy measurements. In [F. Correa Alegria, Bias of amplitude estimation using three-parameter sine fitting in the presence of additive noise, Measurement 42 (2009) 748–756.], several issues regarding the bias of the amplitude estimate were studied. In this work, the results are generalized to include a description of the distribution of the amplitude estimate, with explicit results on bias and variance as by-products. Simple closed form expressions for bias and variance are derived. It is shown that the amplitude estimate in finite samples obeys a Rician distribution. The biased amplitude estimator is also shown to beat all unbiased estimators in terms of mean square error, in a wide spread of scenarios.

[1]  T. E. Linnenbrink Waveform recorder testing: IEEE standard 1057 and You , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.

[2]  Kui-Fu Chen,et al.  Four-parameter sine wave fitting by Gram–Schmidt orthogonalization , 2008 .

[3]  István Kollár,et al.  Improved determination of the best fitting sine wave in ADC testing , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[4]  F. Corrêa Alegria Bias of amplitude estimation using three-parameter sine fitting in the presence of additive noise , 2009 .

[5]  J. Blair Sine-fitting software for IEEE Standards 1057 and 1241 , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[6]  Petre Stoica,et al.  On biased estimators and the unbiased Cramér-Rao lower bound , 1990, Signal Process..

[7]  P. J. Green,et al.  Overview of IEEE-STD-1241 "standard for terminology and test methods for analog-to-digital converters" , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).

[8]  Björn E. Ottersten,et al.  The evil of superefficiency , 1996, Signal Process..

[9]  Peter Händel,et al.  Parameter Estimation Employing a Dual-Channel Sine-Wave Model Under a Gaussian Assumption , 2008, IEEE Transactions on Instrumentation and Measurement.

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Peter Händel,et al.  Multiple-tone estimation by IEEE standard 1057 and the expectation-maximization algorithm , 2005, IEEE Transactions on Instrumentation and Measurement.

[12]  Rik Pintelon,et al.  An improved sine-wave fitting procedure for characterizing data acquisition channels , 1995 .

[13]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[14]  S. O. Rice,et al.  Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..

[15]  Peter Händel,et al.  Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm , 2000, IEEE Trans. Instrum. Meas..

[16]  István Kollár,et al.  Four-parameter fitting of sine wave testing result: iteration and convergence , 2004, Comput. Stand. Interfaces.

[17]  A. Cruz Serra,et al.  A new four parameter sine fitting technique , 2004 .

[18]  Peter Händel,et al.  IEEE Standard 1057, Crame/spl acute/r-Rao bound and the parsimony principle , 2006, IEEE Transactions on Instrumentation and Measurement.

[19]  T.E. Linnenbrink,et al.  IEEE TC-10: Update 2006 , 2006, 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings.

[20]  Amerigo Trotta,et al.  Fast and accurate ADC testing via an enhanced sine wave fitting algorithm , 1996 .

[21]  Kui-Fu Chen,et al.  Sine wave fitting to short records initialized with the frequency retrieved from Hanning windowed FFT spectrum , 2009 .

[22]  Peter J. Kootsookos,et al.  Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..

[23]  A. Cruz Serra,et al.  Low frequency impedance measurement using sine-fitting , 2004 .

[24]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[25]  Allan Steinhardt,et al.  Thresholds in frequency estimation , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  I. Kollar,et al.  Standard framework for IEEE-STD-1241 in MATLAB [ADC testing] , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).