Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow Problems in Civil and Environmental Engineering

This contribution is dedicated to demonstrating the high potential and manifold applications of state-of-the-art computational fluid dynamics (CFD) tools for free-surface flows in civil and environmental engineering. All simulations were performed with the academic research code ELBE (efficient lattice boltzmann environment, http://www.tuhh.de/elbe). The ELBE code follows the supercomputing-on-the-desktop paradigm and is especially designed for local supercomputing, without tedious accesses to supercomputers. ELBE uses graphics processing units (GPU) to accelerate the computations and can be used in a single GPU-equipped workstation of, e.g., a design engineer. The code has been successfully validated in very different fields, mostly related to naval architecture and mechanical engineering. In this contribution, we give an overview of past and present applications with practical relevance for civil engineers. The presented applications are grouped into three major categories: (i) tsunami simulations, considering wave propagation, wave runup, inundation and debris flows; (ii) dam break simulations; and (iii) numerical wave tanks for the calculation of hydrodynamic loads on fixed and moving bodies. This broad range of applications in combination with accurate numerical results and very competitive times to solution demonstrates that modern CFD tools in general, and the ELBE code in particular, can be a helpful design tool for civil and environmental engineers.

[1]  J. C. Martin An experimental study of the collapse of liquid column on a rigid horizontal plane , 1952 .

[2]  Manfred Krafczyk,et al.  Free surface flow simulations on GPGPUs using the LBM , 2011, Comput. Math. Appl..

[3]  U. Rüde,et al.  Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming , 2005 .

[4]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[5]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Karin Rothschild Numerical Modeling Of Ocean Dynamics , 2016 .

[7]  Harry Yeh,et al.  Advanced numerical models for simulating tsunami waves and runup , 2008 .

[8]  Ulrich Rüde,et al.  Free surface lattice Boltzmann with enhanced bubble model , 2014, Comput. Math. Appl..

[9]  T. Sturm,et al.  Open Channel Hydraulics , 2001 .

[10]  Manfred Krafczyk,et al.  LARGE-EDDY SIMULATIONS WITH A MULTIPLE-RELAXATION-TIME LBE MODEL , 2003 .

[11]  Robin Wolff,et al.  An Evaluation of Open Source Physics Engines for Use in Virtual Reality Assembly Simulations , 2012, ISVC.

[12]  Ivan Metrikin,et al.  Numerical Simulation of a Floater in a Broken-Ice Field: Part II — Comparative Study of Physics Engines , 2012 .

[13]  Rik Wemmenhove,et al.  Numerical simulation of two-phase flow in offshore environments , 2008 .

[14]  Zhaoxia Yang,et al.  Pressure boundary condition for the lattice Boltzmann method , 2009, Comput. Math. Appl..

[15]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[16]  Konrad Steiner,et al.  Lattice Boltzmann model for free-surface flow and its application to filling process in casting , 2003 .

[17]  E. Rank,et al.  An Explicit Model for Three-Dimensional Fluid-Structure Interaction using LBM and p-FEM , 2011 .

[18]  Thomas Bräunl,et al.  Evaluation of real-time physics simulation systems , 2007, GRAPHITE '07.

[19]  Sanjay Mittal,et al.  Finite element study of vortex‐induced cross‐flow and in‐line oscillations of a circular cylinder at low Reynolds numbers , 1999 .

[20]  Ian Parsons,et al.  Surface deformation due to shear and tensile faults in a half-space , 1986 .

[21]  Christian Feichtinger,et al.  A Parallel Free Surface Lattice Boltzmann Method for Large-Scale Applications , 2009 .

[22]  Manfred Krafczyk,et al.  A lattice Boltzmann approach for free-surface-flow simulations on non-uniform block-structured grids , 2010, Comput. Math. Appl..

[23]  S. Geller Ein explizites Modell für die Fluid-Struktur-Interaktion basierend auf LBM und p-FEM , 2010 .

[24]  Tumelo R.A. Uoane,et al.  Lattice Boltzmann methods for shallow water flow applications , 2011 .

[25]  Laurent Lefèvre,et al.  Asymmetric lattice Boltzmann model for shallow water flows , 2013 .

[26]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[27]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[28]  Stephan T. Grilli,et al.  A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation , 2012 .

[29]  Jeffrey C. Harris,et al.  Numerical Simulation of the 2011 Tohoku Tsunami: Comparison With Field Observations And Sensitivity to Model Parameters , 2012 .

[30]  安田 浩保 International Workshop on Long-Wave Runup Modelsに参加して , 2004 .

[31]  R. Acevedo,et al.  Research report , 1967, Revista odontologica de Puerto Rico.

[32]  Thomas Rung,et al.  A Fast and Rigorously Parallel Surface Voxelization Technique for GPU-Accelerated CFD Simulations , 2015 .

[33]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[34]  Harry Yeh,et al.  Tsunami run-up and draw-down on a plane beach , 2003, Journal of Fluid Mechanics.

[35]  Kornelia Marchien Theresa Kleefsman Water impact loading on offshore structures. - A numerical study , 2005 .

[36]  Heather McCullough,et al.  2011 Tohoku earthquake and tsunami data available from the National Oceanic and Atmospheric Administration/National Geophysical Data Center , 2011 .

[37]  J. Frandsen,et al.  A simple LBE wave runup model , 2008 .

[38]  Jonas Tölke,et al.  Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA , 2009, Comput. Vis. Sci..

[39]  Kevin Tubbs,et al.  Lattice Boltzmann modeling for shallow water equations using high performance computing , 2010 .

[40]  J. Frandsen Investigations of wave run-up using a LBGK modeling approach , 2006 .

[41]  Manfred Krafczyk,et al.  TeraFLOP computing on a desktop PC with GPUs for 3D CFD , 2008 .

[42]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[43]  Roland Wüchner,et al.  Complementary numerical-experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces , 2015 .

[44]  Ge Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4 , 2000, Journal of Fluid Mechanics.

[45]  Thomas Rung,et al.  A Fast Numerical Method for Internal Flood Water Dynamics to Simulate Water on Deck and Flooding Scenarios of Ships , 2013 .

[46]  Costas E Synolakis,et al.  Tsunami science before and beyond Boxing Day 2004 , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Robert G. Dean,et al.  Water wave mechanics for engineers and scientists , 1983 .

[49]  H. Oumeraci,et al.  Breaking wave impact force on a vertical and inclined slender pile¿theoretical and large-scale model investigations , 2005 .