Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra

This work considers inverse determinant sums, which arise from the union bound on the error probability, as a tool for designing and analyzing algebraic space-time block codes. A general framework to study these sums is established, and the connection between asymptotic growth of inverse determinant sums and the diversity-multiplexing gain tradeoff is investigated. It is proven that the growth of the inverse determinant sum of a division algebra-based space-time code is completely determined by the growth of the unit group. This reduces the inverse determinant sum analysis to studying certain asymptotic integrals in Lie groups. Using recent methods from ergodic theory, a complete classification of the inverse determinant sums of the most well-known algebraic space-time codes is provided. The approach reveals an interesting and tight relation between diversity-multiplexing gain tradeoff and point counting in Lie groups.

[1]  F. Maucourant Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices , 2005 .

[2]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[3]  Frédérique E. Oggier,et al.  An Error Probability Approach to MIMO Wiretap Channels , 2011, IEEE Transactions on Communications.

[4]  Alexander Gorodnik,et al.  Lattice action on the boundary of SL $(n,\mathbb{R})}$ , 2003, Ergodic Theory and Dynamical Systems.

[5]  Louis Solomon,et al.  Zeta functions and integral representation theory , 1977 .

[6]  Lizhen Ji,et al.  Compactifications of Symmetric Spaces , 1998 .

[7]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[8]  Mendoza Freedie Damasco. Simple transmit diversity technique for wireless communications , 2003 .

[9]  Jian-Kang Zhang,et al.  Novel Rotated Quasi-Orthogonal Space-Time Block Codes With the Fixed Nearest Neighbor Number , 2009, IEEE Signal Processing Letters.

[10]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[11]  Anzhong Wong,et al.  Novel Rotated Quasi-Orthogonal Space-Time Block Codes With the Fixed Nearest Neighbor Number , 2010, IEEE Signal Process. Lett..

[12]  Roope Vehkalahti,et al.  An algebraic look into MAC-DMT of lattice space-time codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[13]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[14]  Roope Vehkalahti,et al.  Connecting DMT of division algebra space-time codes and point counting in Lie groups , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  Camilla Hollanti,et al.  Analysis on wiretap lattice codes and probability bounds from Dedekind zeta functions , 2011, 2011 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).

[16]  A. Gorodnik,et al.  The Ergodic Theory of Lattice Subgroups , 2006, math/0605596.

[17]  Jean-Claude Belfiore,et al.  Perfect Space-Time Block Codes for parallel MIMO channels , 2006, 2006 IEEE International Symposium on Information Theory.

[18]  Christopher Holden,et al.  Perfect Space-Time Block Codes , 2004 .

[19]  Roope Vehkalahti,et al.  Diversity-multiplexing gain tradeoff: A tool in algebra? , 2011, 2011 IEEE Information Theory Workshop.

[20]  Alexander Gorodnik,et al.  Counting lattice points , 2009, 0903.1515.

[21]  Camilla Hollanti,et al.  On the Densest MIMO Lattices From Cyclic Division Algebras , 2007, IEEE Transactions on Information Theory.

[22]  Camilla Hollanti,et al.  Maximal Orders in the Design of Dense Space-Time Lattice Codes , 2008, IEEE Transactions on Information Theory.

[23]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[24]  Colin J. Bushnell,et al.  Solomon's conjectures and the local functional equation for zeta functions of orders , 1980 .

[25]  Frédérique E. Oggier,et al.  Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.

[26]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[27]  P. Vijay Kumar,et al.  Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.

[28]  Antonio Córdoba,et al.  Lattice points , 1997 .

[29]  Pramod Viswanath,et al.  Approximately universal codes over slow-fading channels , 2005, IEEE Transactions on Information Theory.

[30]  Graham Everest,et al.  On the solution of the norm-form equation , 1992 .

[31]  Frédérique E. Oggier,et al.  Lattice Code Design for the Rayleigh Fading Wiretap Channel , 2011, 2011 IEEE International Conference on Communications Workshops (ICC).

[32]  Arkady L. Onishchik,et al.  Lectures on Real Semisimple Lie Algebras and Their Representations , 2003 .

[33]  Camilla Hollanti,et al.  Fast-Decodable Asymmetric Space-Time Codes From Division Algebras , 2010, IEEE Transactions on Information Theory.

[34]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[35]  Jean-Claude Belfiore,et al.  Algebraic tools to build modulation schemes for fading channels , 1997, IEEE Trans. Inf. Theory.

[36]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[37]  Richard D. Wesel,et al.  Universal space-time trellis codes , 2003, IEEE Trans. Inf. Theory.

[38]  Alexander Gorodnik,et al.  Distribution of lattice orbits on homogeneous varieties , 2004 .

[39]  Colin J. Bushnell,et al.  L-functions of arithmetic orders and asymptotic distribution of ideals. , 1981 .

[40]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[41]  Paul Epstein,et al.  Zur Theorie allgemeiner Zetafunctionen , 1903 .

[42]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[43]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[44]  Ernst Kleinert Units in Skew Fields , 2000 .

[45]  Daniel J. Ryan,et al.  Blind detection of PAM and QAM in fading channels , 2006, IEEE Transactions on Information Theory.

[46]  Graham Everest,et al.  Counting Algebraic Units with Bounded Height , 1993 .