Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction.

The exceptional self-assembly properties of DNA, which are based on simple base-paring rules, make it a very promising construction material in the nanoworld. [ 1 ] The development of the DNA-origami technique, [ 2 ] which is based on the folding of long single-stranded DNA with the help of hundreds of short oligonucleotides (so-called staple strands), opened new routes to relatively simple and fast fabrication of twoand three-dimensional nanostructures of exceptional complexity. [ 2–7 ] Since individual staple strands can be readily modifi ed with various functional groups, the DNA-origami structure can be used as a template for the organization of different materials, for example, proteins, [ 8–11 ] metal nanoparticles, [ 12–14 ] virus capsids, [ 15 ] and carbon nanotubes, [ 16 ]

[1]  J. Tour,et al.  Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions , 2007, Science.

[2]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[3]  M. Klein,et al.  Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. , 2007, Nano letters.

[4]  Leonid Khriachtchev,et al.  Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor , 2006 .

[5]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[6]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[7]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[8]  Sang Yeol Lee,et al.  ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode , 2010 .

[9]  Ying Tian,et al.  Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. , 2010, Nano letters.

[10]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[11]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[12]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[13]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[14]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[15]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[16]  Masayuki Endo,et al.  Inside Cover: Programmed‐Assembly System Using DNA Jigsaw Pieces (Chem. Eur. J. 18/2010) , 2010 .

[17]  H. Sugiyama,et al.  Programmed-assembly system using DNA jigsaw pieces. , 2010, Chemistry.

[18]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[19]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[20]  D. Côte,et al.  DNA-carbon nanotube conjugates prepared by a versatile method using streptavidin-biotin recognition. , 2008, Small.

[21]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[22]  Tami Lasseter Clare,et al.  Electrical characterization of nanowire bridges incorporating biomolecular recognition elements , 2005 .

[23]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[24]  Päivi Törmä,et al.  High-speed memory from carbon nanotube field-effect transistors with high-kappa gate dielectric. , 2009, Nano letters.

[25]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[26]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[27]  Jaebeom Lee,et al.  Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade Förster resonance energy transfer and energy channeling. , 2005, Nano letters.

[28]  D. Brunel,et al.  Imaging the operation of a carbon nanotube charge sensor at the nanoscale. , 2010, ACS nano.

[29]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[30]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[31]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[32]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[33]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[34]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[35]  Julien Cambedouzou,et al.  Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide , 2010 .

[36]  A. Kuzyk,et al.  Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy. , 2009, Small.

[37]  Akinori Kuzuya,et al.  Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. , 2010, Journal of the American Chemical Society.

[38]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[39]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[40]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[41]  Friedrich C. Simmel,et al.  DNA Origami as a Nanoscopic Ruler for Super‐Resolution Microscopy , 2009 .

[42]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[43]  N. Seeman DNA in a material world , 2003, Nature.