Large-scale mutagenesis: yeast genetics in the genome era.

[1]  C. Lawrence Classical mutagenesis techniques. , 2002, Methods in enzymology.

[2]  M. Gerstein,et al.  The current excitement in bioinformatics-analysis of whole-genome expression data: how does it relate to protein structure and function? , 2000, Current opinion in structural biology.

[3]  D. Yuan Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging. , 2000, Genetics.

[4]  A. Goffeau Four years of post‐genomic life with 6000 yeast genes , 2000, FEBS letters.

[5]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[6]  J. Horecka,et al.  Identifying tagged transposon insertion sites in yeast by direct genomic sequencing , 2000, Yeast.

[7]  Hongyue Dai,et al.  Widespread aneuploidy revealed by DNA microarray expression profiling , 2000, Nature Genetics.

[8]  Shirley M. Tilghman,et al.  Exploring genome space , 2000, Nature.

[9]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[10]  M. Snyder,et al.  Genome-wide mutant collections: toolboxes for functional genomics. , 2000, Current opinion in microbiology.

[11]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[12]  E. Raleigh,et al.  A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. , 2000, Nucleic acids research.

[13]  Kei-Hoi Cheung,et al.  TRIPLES: a database of gene function in Saccharomyces cerevisiae , 2000, Nucleic Acids Res..

[14]  Kei-Hoi Cheung,et al.  Large-scale analysis of the yeast genome by transposon tagging and gene disruption , 1999, Nature.

[15]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[16]  P. Slonimski,et al.  Chemotyping of yeast mutants using robotics , 1999, Yeast.

[17]  Elizabeth A. Winzeler,et al.  Genomic profiling of drug sensitivities via induced haploinsufficiency , 1999, Nature Genetics.

[18]  P. Ross-Macdonald,et al.  Transposon mutagenesis for the analysis of protein production, function, and localization. , 1999, Methods in enzymology.

[19]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[20]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[21]  G. Bellí,et al.  Functional analysis of yeast essential genes using a promoter‐substitution cassette and the tetracycline‐regulatable dual expression system , 1998 .

[22]  M. Snyder,et al.  Pheromone-regulated Genes Required for Yeast Mating Differentiation , 1998, The Journal of cell biology.

[23]  G. Bellí,et al.  An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. , 1998, Nucleic acids research.

[24]  Ronald W. Davis,et al.  Functional analysis of the yeast genome. , 1997, Current opinion in genetics & development.

[25]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[27]  H. Bussey,et al.  Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. , 1997, Genetics.

[28]  Michael Hampsey,et al.  A Review of Phenotypes in Saccharomyces cerevisiae , 1997, Yeast.

[29]  T. Mélèse,et al.  A role for the divergent actin gene, ACT2, in nuclear pore structure and function , 1997, The EMBO journal.

[30]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[31]  G. Fink,et al.  Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. , 1997, Genetics.

[32]  P. Ross-Macdonald,et al.  A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D Botstein,et al.  Functional Analysis of the Genes of Yeast Chromosome V by Genetic Footprinting , 1996, Science.

[34]  Ronald W. Davis,et al.  Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy , 1996, Nature Genetics.

[35]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[36]  M. Goebl,et al.  The identification of transposon-tagged mutations in essential genes that affect cell morphology in Saccharomyces cerevisiae. , 1996, Genetics.

[37]  D Botstein,et al.  Genetic footprinting: a genomic strategy for determining a gene's function given its sequence. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Ross-Macdonald,et al.  Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. , 1994, Genes & development.

[39]  J. R. Warner,et al.  A temperature sensitive mutant of Saccharomyces cerevisiae defective in pre-rRNA processing. , 1991, Nucleic acids research.

[40]  E. Chiao,et al.  A Tn3 derivative that can be used to make short in-frame insertions within genes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Broach,et al.  Cloning genes by complementation in yeast. , 1991, Methods in enzymology.