Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method

Abstract The hybrid orbital operator is crucial in the fragment molecular orbital (FMO) method for the fragmentation across covalent bonds, however, its gradients have not been properly derived. We show that these very substantial contributions are the cause of the major part of the gradient error in FMO, impeding geometry optimizations and molecular dynamics. Capped alanine decamer ( ALA ) 10 and chignolin (PDB: 1UAO ) solvated by 157 water molecules are used to assess the accuracy of the energy gradients, and the errors are reduced by approximately one order of magnitude.

[1]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[2]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[3]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[4]  Kazuo Kitaura,et al.  Time-dependent density functional theory based upon the fragment molecular orbital method. , 2007, The Journal of chemical physics.

[5]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[6]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[7]  K. Kitaura,et al.  Time-dependent density functional theory with the multilayer fragment molecular orbital method , 2007 .

[8]  Shigenori Tanaka,et al.  Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method , 2009 .

[9]  A. Imamura,et al.  Electronic structures and nonlinear optical properties of supramolecular associations of benzo-2,1,3-chalcogendiazoles by the elongation method , 2010 .

[10]  Noriyuki Kurita,et al.  Fragment molecular orbital method with density functional theory and DIIS convergence acceleration , 2003 .

[11]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[12]  Wei Li,et al.  Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. , 2008, The journal of physical chemistry. A.

[13]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[14]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[15]  Pär Söderhjelm,et al.  How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. , 2009, The journal of physical chemistry. A.

[16]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[17]  Yuichi Inadomi,et al.  Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’ , 2003 .

[18]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[19]  T. Nakano,et al.  Parallelized integral-direct CIS(D) calculations with multilayer fragment molecular orbital scheme , 2007 .

[20]  Kazuya Ishimura,et al.  Accuracy of the three‐body fragment molecular orbital method applied to Møller–Plesset perturbation theory , 2007, J. Comput. Chem..

[21]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[22]  T. Nakano,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion , 2010 .

[23]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[24]  Daniel Collado,et al.  Molecules with Multiple Light-Emissive Electronic Excited States as a Strategy toward Molecular Reversible Logic Gates , 2007 .

[25]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[26]  Kazuo Kitaura,et al.  Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method , 2009 .

[27]  Kenneth M Merz,et al.  Divide-and-Conquer Hartree-Fock Calculations on Proteins. , 2010, Journal of chemical theory and computation.

[28]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[29]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges. , 2009, Journal of chemical theory and computation.

[30]  Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach† , 2010 .

[31]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[32]  Spencer R Pruitt,et al.  Open-Shell Formulation of the Fragment Molecular Orbital Method. , 2010, Journal of chemical theory and computation.

[33]  Jan H. Jensen,et al.  Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. , 2008, The journal of physical chemistry. A.

[34]  Masato Kobayashi,et al.  Time-dependent Hartree–Fock frequency-dependent polarizability calculation applied to divide-and-conquer electronic structure method , 2010 .

[35]  Donald G Truhlar,et al.  X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water. , 2009, Journal of chemical theory and computation.

[36]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[37]  Shinya Honda,et al.  10 residue folded peptide designed by segment statistics. , 2004, Structure.

[38]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[39]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[40]  Kazuo Kitaura,et al.  Polarizable continuum model with the fragment molecular orbital‐based time‐dependent density functional theory , 2008, J. Comput. Chem..

[41]  Hermann Stoll,et al.  A Simple One-Body Approach to the Calculation of the First Electronic Absorption Band of Water. , 2009, Journal of chemical theory and computation.

[42]  M. Gordon,et al.  A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. , 2009, The Journal of chemical physics.

[43]  Anuja P. Rahalkar,et al.  Enabling ab initio Hessian and frequency calculations of large molecules. , 2008, The Journal of chemical physics.

[44]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .