In this paper we consider some iterative methods of higher order for the simultaneous determination of polynomial zeros. The proposed methods are based on Euler’s third order method for finding a zero of a given function and involve Weierstrass’ correction in the case of simple zeros. We prove that the presented methods have the order of convergence equal to four or more. Based on a fixed-point relation of Euler’s type, two inclusion methods are derived. Combining the proposed methods in floating-point arithmetic and complex interval arithmetic, an efficient hybrid method with automatic error bounds is constructed. Computational aspect and the implementation of the presented algorithms on parallel computers are given.