Intuitionistic implication without disjunction

We investigate fragments of intuitionistic propositional logic containing implication but not disjunction. These fragments are finite, but their size grows superexponentially with the number of generators. Exact models are used to characterize the fragments.

[1]  A. Heyting Die formalen Regeln der intuitionistischen Logik , 1930 .

[2]  de Ng Dick Bruijn Exact finite models for minimal propositional calculus over a finite alphabet , 1975 .

[3]  A. Monteiro,et al.  Axiomes independants pour les algèbres de Brouwer , 1955 .

[4]  Craig Graham McKay,et al.  The decidability of certain intermediate propositional logics , 1968, Journal of Symbolic Logic.

[5]  Evert W. Beth,et al.  Semantic Entailment And Formal Derivability , 1955 .

[6]  Raymond Balbes On free pseudo-complemented and relatively pseudo-complemented semi-lattices , 1973 .

[7]  T. P. Whaley,et al.  The free implicative semi-lattice on three generators , 1976 .

[8]  A. S. Troelstra,et al.  On the connection of partially ordered sets with some pseudo-Boolean algebras , 1966 .

[9]  Gerard R. Renardel de Lavalette,et al.  Interpolation in fragments of intuitionistic propositional logic , 1987, Journal of Symbolic Logic.

[10]  Fa Dick,et al.  The use of partially ordered sets for the study of non-classical propositional logics , 1978 .

[11]  Fan Yang,et al.  Intuitionistic Subframe Formulas, NNIL-Formulas and n-universal Models , 2008 .

[12]  D. de Jonh,et al.  COMPUTATIONS IN FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC , 1988 .

[13]  J JonghdeD.H.,et al.  Beth's Nonclassical Valuations , 1998 .

[14]  Warren D. Goldfarb,et al.  Characters and Fixed Points in Provability Logic , 1989, Notre Dame J. Formal Log..

[15]  Th. Skolem Consideraciones sobre los fundamentos de la matemática , 1952 .

[16]  T. P. Whaley,et al.  Relatively free implicative semi-lattices , 1974 .

[17]  G. Birkhoff Rings of sets , 1937 .

[18]  De Jongh,et al.  Investigations on the intuitionistic propositional calculus , 1968 .

[19]  Kit Fine,et al.  Logics containing K4. Part I , 1974, Journal of Symbolic Logic.

[20]  G. Boolos The Unprovability of Consistency: An Essay in Modal Logic , 1979 .

[21]  W. Nemitz Implicative semi-lattices , 1965 .

[22]  de Ng Dick Bruijn The use of partially ordered sets for the study of non-classical propositional logics , 1978 .

[23]  Iwao Nishimura,et al.  On Formulas of One Variable in Intuitionistic Propositional Calculus , 1960, J. Symb. Log..

[24]  Alasdair Urquhart Implicational Formulas in Intuitionistic Logic , 1974, J. Symb. Log..

[25]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[26]  Piotr S. Krzystek ON FREE RELATIVELY PSEUDOCOMPLEMENTED SEMILATTICE WITH THREE GENERATORS , 2011 .

[27]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[28]  de Ng Dick Bruijn,et al.  An algol program for deciding derivability in minimal propositional calculus with implication and conjunction over a three letter alphabet , 1975 .

[29]  Kit Fine Logics Containing K4. Part I , 1974, J. Symb. Log..

[30]  Malgorzata Porebska Interpolation and amalgamation properties in varieties of equivalential algebras , 1986, Stud Logica.

[31]  Ladislav Rieger On the lattice theory of Brouwerian propositional logic , 1949 .

[32]  A. Hendriks,et al.  Finitely generated Magari algebras and arithmetic , 1996 .

[33]  Joel Berman,et al.  Free Łukasiewicz and Hoop Residuation Algebras , 2004, Stud Logica.

[34]  A. Hendriks,et al.  Computations in Propositional Logic , 1996 .