Intuitionistic implication without disjunction
暂无分享,去创建一个
Lex Hendriks | Dick de Jongh | Gerard R. Renardel de Lavalette | G. R. D. Lavalette | D. D. Jongh | L. Hendriks | G. D. Lavalette
[1] A. Heyting. Die formalen Regeln der intuitionistischen Logik , 1930 .
[2] de Ng Dick Bruijn. Exact finite models for minimal propositional calculus over a finite alphabet , 1975 .
[3] A. Monteiro,et al. Axiomes independants pour les algèbres de Brouwer , 1955 .
[4] Craig Graham McKay,et al. The decidability of certain intermediate propositional logics , 1968, Journal of Symbolic Logic.
[5] Evert W. Beth,et al. Semantic Entailment And Formal Derivability , 1955 .
[6] Raymond Balbes. On free pseudo-complemented and relatively pseudo-complemented semi-lattices , 1973 .
[7] T. P. Whaley,et al. The free implicative semi-lattice on three generators , 1976 .
[8] A. S. Troelstra,et al. On the connection of partially ordered sets with some pseudo-Boolean algebras , 1966 .
[9] Gerard R. Renardel de Lavalette,et al. Interpolation in fragments of intuitionistic propositional logic , 1987, Journal of Symbolic Logic.
[10] Fa Dick,et al. The use of partially ordered sets for the study of non-classical propositional logics , 1978 .
[11] Fan Yang,et al. Intuitionistic Subframe Formulas, NNIL-Formulas and n-universal Models , 2008 .
[12] D. de Jonh,et al. COMPUTATIONS IN FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC , 1988 .
[13] J JonghdeD.H.,et al. Beth's Nonclassical Valuations , 1998 .
[14] Warren D. Goldfarb,et al. Characters and Fixed Points in Provability Logic , 1989, Notre Dame J. Formal Log..
[15] Th. Skolem. Consideraciones sobre los fundamentos de la matemática , 1952 .
[16] T. P. Whaley,et al. Relatively free implicative semi-lattices , 1974 .
[17] G. Birkhoff. Rings of sets , 1937 .
[18] De Jongh,et al. Investigations on the intuitionistic propositional calculus , 1968 .
[19] Kit Fine,et al. Logics containing K4. Part I , 1974, Journal of Symbolic Logic.
[20] G. Boolos. The Unprovability of Consistency: An Essay in Modal Logic , 1979 .
[21] W. Nemitz. Implicative semi-lattices , 1965 .
[22] de Ng Dick Bruijn. The use of partially ordered sets for the study of non-classical propositional logics , 1978 .
[23] Iwao Nishimura,et al. On Formulas of One Variable in Intuitionistic Propositional Calculus , 1960, J. Symb. Log..
[24] Alasdair Urquhart. Implicational Formulas in Intuitionistic Logic , 1974, J. Symb. Log..
[25] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[26] Piotr S. Krzystek. ON FREE RELATIVELY PSEUDOCOMPLEMENTED SEMILATTICE WITH THREE GENERATORS , 2011 .
[27] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[28] de Ng Dick Bruijn,et al. An algol program for deciding derivability in minimal propositional calculus with implication and conjunction over a three letter alphabet , 1975 .
[29] Kit Fine. Logics Containing K4. Part I , 1974, J. Symb. Log..
[30] Malgorzata Porebska. Interpolation and amalgamation properties in varieties of equivalential algebras , 1986, Stud Logica.
[31] Ladislav Rieger. On the lattice theory of Brouwerian propositional logic , 1949 .
[32] A. Hendriks,et al. Finitely generated Magari algebras and arithmetic , 1996 .
[33] Joel Berman,et al. Free Łukasiewicz and Hoop Residuation Algebras , 2004, Stud Logica.
[34] A. Hendriks,et al. Computations in Propositional Logic , 1996 .