Hyper-optimization for deterministic tree automata

Hyper-minimization is a lossy minimization technique that allows a finite number of errors. It was already demonstrated that hyper-minimization can be performed efficiently for deterministic string automata and (bottom-up) deterministic tree automata (DTAs). The asymptotically fastest DTA hyper-minimization algorithms run in time O ( m ? log ? n ) , where m is the size of the DTA and n is the number of its states. In this contribution, the committed errors are investigated. First, the structure of all hyper-minimal DTAs for a given tree language is characterized, which also yields a formula for the number of such hyper-minimal DTAs. Second, an algorithm is developed that computes the number of errors that a given hyper-minimal DTA commits when compared to a given reference DTA. Third, it is shown that optimal hyper-minimization (i.e., computing a hyper-minimal DTA that commits the least number of errors of all hyper-minimal DTAs) can be achieved in time O ( m ? n ) . Finally, a discussion of various other error measures (besides only their number) is provided.

[1]  Artur Jez,et al.  On Minimising Automata with Errors , 2011, MFCS.

[2]  Andrew Badr,et al.  HYPER-MINIMIZATION IN O(n2) , 2008, Int. J. Found. Comput. Sci..

[3]  Andreas Maletti,et al.  Bisimulation Minimisation for Weighted Tree Automata , 2007, Developments in Language Theory.

[4]  Artur Jez,et al.  Hyper-minimisation Made Efficient , 2009, MFCS.

[5]  Sven Schewe,et al.  Beyond Hyper-Minimisation---Minimising DBAs and DPAs is NP-Complete , 2010, FSTTCS.

[6]  William J. Byrne,et al.  Hierarchical Phrase-based Translation Representations , 2011, EMNLP.

[7]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[8]  Artur Jez,et al.  Hyper-Minimization for Deterministic Tree Automata , 2012, Int. J. Found. Comput. Sci..

[9]  Andreas Maletti,et al.  Optimal Hyper-Minimization , 2011, Int. J. Found. Comput. Sci..

[10]  Andreas Maletti Hyper-optimization for Deterministic Tree Automata , 2013, CIAA.

[11]  Andreas Maletti,et al.  An nlogn algorithm for hyper-minimizing a (minimized) deterministic automaton , 2010, Theor. Comput. Sci..

[12]  Andreas Maletti,et al.  Unweighted and Weighted Hyper-Minimization , 2012, Int. J. Found. Comput. Sci..

[13]  Dan Klein,et al.  Learning Accurate, Compact, and Interpretable Tree Annotation , 2006, ACL.

[14]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[15]  Georg Schnitger,et al.  Minimizing nfa's and regular expressions , 2007, J. Comput. Syst. Sci..

[16]  H. Vogler,et al.  Weighted Tree Automata and Tree Transducers , 2009 .

[17]  Andreas Maletti,et al.  Backward and forward bisimulation minimization of tree automata , 2009, Theor. Comput. Sci..

[18]  Andreas Maletti,et al.  Hyper-minimisation of deterministic weighted finite automata over semifields , 2011, AFL.

[19]  Mehryar Mohri Weighted Finite-State Transducer Algorithms. An Overview , 2004 .

[20]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[21]  Viliam Geffert,et al.  Hyper-minimizing minimized deterministic finite state automata , 2009, RAIRO Theor. Informatics Appl..

[22]  Markus Holzer,et al.  From Equivalence to Almost-Equivalence, and Beyond - Minimizing Automata with Errors - (Extended Abstract) , 2012, Developments in Language Theory.

[23]  Andreas Podelski,et al.  Tree Automata and Languages , 1992 .

[24]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[25]  Shou-Feng Wang,et al.  𝒫𝒮-regular languages , 2011, Int. J. Comput. Math..

[26]  J. Sakarovitch Rational and Recognisable Power Series , 2009 .

[27]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.