Building Tag-Aware Groups for Music High-Order Ranking and Topic Discovery

In popular music information retrieval systems, users have the opportunity to tag musical objects to express their personal preferences, thus providing valuable insights about the formulation of user groups/communities. In this article, the authors focus on the analysis of social tagging data to reveal coherent groups characterized by their users, tags and music objects e.g., songs and artists, which allows for the expression of discovered groups in a multi-aspect way. For each group, this study reveals the most prominent users, tags, and music objects using a generalization of the popular web-ranking concept in the social data domain. Experimenting with real data, the authors' results show that each Tag-Aware group corresponds to a specific music topic, and additionally, a three way ranking analysis is performed inside each group. Building Tag-Aware groups is crucial to offer ways to add structure in the unstructured nature of tags.

[1]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[2]  Panagiotis Symeonidis,et al.  Ternary Semantic Analysis of Social Tags for Personalized Music Recommendation , 2008, ISMIR.

[3]  In-Beum Lee,et al.  Nonlinear regression using RBFN with linear submodels , 2003 .

[4]  Marieke Guy,et al.  Folksonomies: Tidying Up Tags? , 2006, D Lib Mag..

[5]  Paul Lamere,et al.  Social Tagging and Music Information Retrieval , 2008 .

[6]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[7]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[8]  Shu-Ching Chen,et al.  Hybrid Query Refinement: A Strategy for a Distance Based Index Structure to Refine Multimedia Queries , 2011, Int. J. Multim. Data Eng. Manag..

[9]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[10]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[11]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[12]  Mark B. Sandler,et al.  A Semantic Space for Music Derived from Social Tags , 2007, ISMIR.

[13]  Martin Fleury,et al.  Mobile Video Streaming over Heterogeneous Networks , 2011 .

[14]  E. Pampalk Islands of Music Analysis, Organization, and Visualization of Music Archives , 2002 .

[15]  Arbee L. P. Chen,et al.  A Music Recommendation System Based on Music and User Grouping , 2005, Journal of Intelligent Information Systems.

[16]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[17]  Myra Spiliopoulou,et al.  Tag-Aware Spectral Clustering of Music Items , 2009, ISMIR.

[18]  Tamara G. Kolda,et al.  Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[19]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[20]  J. Stephen Downie,et al.  The music information retrieval evaluation exchange (2005-2007): A window into music information retrieval research , 2008, Acoustical Science and Technology.

[21]  Margherita Pagani,et al.  Encyclopedia of Multimedia Technology and Networking (second edition) , 2009 .

[22]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[23]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[24]  Mark Sandler,et al.  Learning Latent Semantic Models for Music from Social Tags , 2008 .

[25]  Ismail Khalil,et al.  Innovations in Mobile Multimedia Communications and Applications: New Technologies , 2011 .

[26]  Yong Yu,et al.  Exploring social annotations for the semantic web , 2006, WWW '06.