On extremal bipartite unicyclic graphs

Abstract Let U n + be the set of connected bipartite unicyclic graphs with n vertices. Here we consider the extremal graphs in U n + with respect to both the Estrada index of themselves and the Kirchhoff index of their complements. We find that the first two and the last one unicyclic graphs in U n + according to these two orderings are coincident.

[1]  Bo Zhou,et al.  ON ESTRADA INDEX , 2008 .

[2]  A connection between ordinary and Laplacian spectra of bipartite graphs , 2008 .

[3]  Bo Zhou,et al.  On Estrada index of trees , 2011 .

[4]  Bo Zhou,et al.  The Estrada index of unicyclic graphs , 2012 .

[5]  Yujun Yang,et al.  Unicyclic graphs with extremal Kirchhoff index , 2008 .

[6]  J. A. Rodríguez-Velázquez,et al.  Atomic branching in molecules , 2006 .

[7]  Wen-Huan Wang Unicyclic Graph with Maximal Estrada Indices , 2012 .

[8]  I. Gutman,et al.  Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices , 2013 .

[9]  L. C. Barbosa,et al.  Raman, hyperraman, hyper-Rayleigh, two-photon excited luminescence and morphology-dependent-modes in a single optical tweezers system , 2005 .

[10]  Ernesto Estrada Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.

[11]  Dragan Stevanović,et al.  The Estrada index of chemical trees , 2009 .

[12]  Yujun Yang Bounds for the Kirchhoff Index of Bipartite Graphs , 2012, J. Appl. Math..

[13]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Bo Zhou,et al.  A note on Kirchhoff index , 2008 .

[15]  Yi-Zheng Fan,et al.  Estrada Index of Random Graphs , 2012 .

[16]  Rao Li,et al.  Lower Bounds for the Kirchhoff Index , 2013 .

[17]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .

[18]  Kexiang Xu,et al.  Comparison between Kirchhoff index and the Laplacian-energy-like invariant , 2012 .

[19]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[21]  Kinkar Ch. Das,et al.  On the Estrada index conjecture , 2009 .

[22]  N. Biggs Algebraic Graph Theory , 1974 .

[23]  Zhibin Du,et al.  On the Estrada and Laplacian Estrada indices of graphs , 2011 .

[24]  Xing Gao,et al.  Resistance distances and the Kirchhoff index in Cayley graphs , 2011, Discret. Appl. Math..

[25]  Ernesto Estrada,et al.  Topological atomic displacements, Kirchhoff and Wiener indices of molecules , 2009, 0912.2628.

[26]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[27]  G. Zocchi,et al.  Local cooperativity mechanism in the DNA melting transition. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Ernesto Estrada Atom–bond connectivity and the energetic of branched alkanes , 2008 .

[29]  Qingying Deng,et al.  On the Kirchhoff index of the complement of a bipartite graph , 2013 .

[30]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[31]  Béla Bollobás,et al.  Walks and paths in trees , 2010, J. Graph Theory.

[32]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[33]  Ivan Gutman,et al.  On atom-bond connectivity index and its chemical applicability , 2012 .

[34]  Péter Csikvári,et al.  On a poset of trees , 2010, Comb..