Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy.

Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

[1]  H. Rylander Iii,et al.  Detection of neural activity using phase-sensitive optical low-coherence reflectometry. , 2004, Optics express.

[2]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[3]  Grigory V. Gelikonov,et al.  Cost-effective all-fiber autocorrelator-based 1300-nm OCT system , 2005, SPIE BiOS.

[4]  Harald Sattmann,et al.  En face imaging of single cell layers by differential phase-contrast optical coherence microscopy. , 2002, Optics letters.

[5]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[6]  H. Seung,et al.  Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. , 2004, Optics letters.

[7]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[8]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[9]  C K Hitzenberger,et al.  Differential phase contrast in optical coherence tomography. , 1999, Optics letters.

[10]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[11]  C. Dotti,et al.  Neuronal Polarity: Vectorial Cytoplasmic Flow Precedes Axon Formation , 1997, Neuron.

[12]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[13]  T. Milner,et al.  Optical low-coherence reflectometer for differential phase measurement. , 2000, Optics letters.

[14]  A. Fercher,et al.  Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.

[15]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[16]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[17]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[18]  K. Jeon,et al.  Characterization of Myosin Heavy Chain and Its Gene in Amoeba proteus , 1998, The Journal of eukaryotic microbiology.

[19]  D. Taylor,et al.  Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas , 1980, The Journal of cell biology.

[20]  Changhuei Yang,et al.  Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers. , 2005, Optics express.

[21]  Taylor,et al.  In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells , 1993, The Journal of cell biology.

[22]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[23]  Audrey K. Ellerbee,et al.  Spectral-domain phase microscopy. , 2004, Optics Letters.

[24]  D. Kane,et al.  Common-path interferometer for frequency-domain optical coherence tomography. , 2003, Applied optics.

[25]  Siavash Yazdanfar,et al.  Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. , 2005, Optics express.

[26]  Steven N. Hird,et al.  Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans , 1993, The Journal of cell biology.

[27]  P. Pomorski,et al.  Characterization of Amoeba proteus myosin VI immunoanalog. , 2005, Cell motility and the cytoskeleton.

[28]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[29]  J. Izatt,et al.  Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. , 1998, Optics letters.

[30]  M S Feld,et al.  Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics. , 2001, Optics letters.

[31]  H. Miyoshi,et al.  Chaotic behavior in the locomotion ofamoeba proteus , 2007, Protoplasma.

[32]  Joseph A Izatt,et al.  Spectral-domain phase microscopy. , 2004, Optics letters.

[33]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .