Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark matter density with two extra parameters, and may be able to help alleviate the observed discrepancies between early- and late-time probes of the universe. We investigate how the conversion affects key cosmological observables such as the CMB temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey, Planck -2018 CMB temperature and polarization data, supernovae (SN) Type Ia data from Pantheon, and baryon acoustic oscillation (BAO) data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has converted to dark radiation and the rate of this conversion. The fraction of the dark matter that has converted since the beginning of the universe in units of the current amount of dark matter, ζ , is constrained at 68% confidence level to be < 0 . 32 for DES-Y1 3x2pt data, < 0 . 030 for CMB+SN+BAO data, and < 0 . 037 for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are concordant increases from 4% for the Λ CDM model to 8% (less tension) for DMDR. The tension in S 8 = σ 8 (cid:112) Ω m / 0 . 3 between DES-Y1 3x2pt and CMB+SN+BAO is slightly reduced from 2 . 3 σ to 1 . 9 σ . We find no reduction in the Hubble tension when the combined data is compared to distance-ladder measurements in the DMDR model. The maximum-posterior goodness-of-fit statistics of DMDR and Λ CDM model are comparable, indicating no preference for the DMDR cosmology over Λ CDM.

D. Gerdes | J. Frieman | O. Lahav | P. Fosalba | J. Weller | J. García-Bellido | A. Rosell | K. Honscheid | M. Maia | A. Ross | M. Kind | R. Gruendl | A. Palmese | J. Annis | S. Allam | J. Gschwend | I. Sevilla-Noarbe | T. Abbott | S. Ávila | D. Brooks | J. Carretero | M. Crocce | P. Doel | T. Eifler | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | B. Hoyle | D. James | K. Kuehn | F. Menanteau | R. Miquel | V. Scarpine | M. Schubnell | S. Serrano | M. Smith | E. Suchyta | G. Tarlé | J. Zuntz | E. Sheldon | J. Blazek | T. Davis | S. Dodelson | D. Thomas | J. Muir | L. Secco | M. Troxel | S. Bridle | M. Aguena | S. Hinton | D. Huterer | N. MacCrann | A. Liddle | M. Jarvis | E. D. Valentino | F. Paz-Chinchón | R. Morgan | R. Cawthon | M. Costanzi | I. Sevilla | A. Choi | S. Bhargava | T. Varga | R. Wilkinson | P. Lemos | A. Carnero Rosell | M. Carrasco Kind | J. Elvin-Poole | M. Troxel | M. Raveri | E. Di Valentino | E. Sanchez | C. D. Leonard | L. da Costa | E. Bertin | S. Lee | I. Ferrero | C. To | A. Ferté | M. C. Kind | A. C. Rosell | N. Weaverdyck | A. Plazas | A. Chen | O. Alves | A. Campos | A. Porredon | A. Roodman | E. Bertin | J. Marshall | M. Pereira | Ami Choi | Angela Chen | Sujeong Lee | F. Paz-Chinchón | D. Thomas | Mathew Smith | A. Fert'e | Otavio Alonso Alves | C. D. Leonard | P. Lemos | A. Campos | T. Abbott | S. Allam | L. D. Costa | Maria E. S. Pereira | Tamara M. Davis | J. Garcı́a-Bellido | D. Gerdes | D. James | J. Marshall | R. Miquel | A. P. Malag'on | Eusebio Sánchez | Santiago Serrano | Chun-Hao To | J. Weller | J. García-Bellido | E. Sánchez | E. Sanchez

[1]  R. B. Barreiro,et al.  Planck 2018 results: V. CMB power spectra and likelihoods , 2020 .

[2]  E. D. Valentino,et al.  A complete model of Phenomenologically Emergent Dark Energy , 2020, 2007.02927.

[3]  Tristan L. Smith,et al.  Clustering and halo abundances in early dark energy cosmological models , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  T. Jeltema,et al.  The XMM Cluster Survey: new evidence for the 3.5-keV feature in clusters is inconsistent with a dark matter origin , 2020, 2006.13955.

[5]  J. Hill,et al.  Constraining early dark energy with large-scale structure , 2020, Physical Review D.

[6]  Cristian Moreno-Pulido,et al.  Brans–Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions , 2020, Classical and Quantum Gravity.

[7]  L. Pogosian,et al.  Relieving the Hubble Tension with Primordial Magnetic Fields. , 2020, Physical review letters.

[8]  M. Viel,et al.  Late-time decaying dark matter: constraints and implications for the H0-tension , 2020, 2004.07709.

[9]  D. Hooper,et al.  Warm decaying dark matter and the hubble tension , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  I. Masina Dark matter and dark radiation from evaporating primordial black holes , 2020, The European Physical Journal Plus.

[11]  A. Starobinsky,et al.  Scalar-tensor theories of gravity, neutrino physics, and the H0 tension , 2020, Journal of Cosmology and Astroparticle Physics.

[12]  J. Hill,et al.  Early dark energy does not restore cosmological concordance , 2020, 2003.07355.

[13]  Wayne Hu,et al.  Can late dark energy transitions raise the Hubble constant? , 2020, Physical Review D.

[14]  J. Pradler,et al.  Constraining dark photons and their connection to 21 cm cosmology with CMB data , 2020, Physics Letters B.

[15]  Generalised Emergent Dark Energy Model: Confronting $\Lambda$ and PEDE , 2020, 2001.05103.

[16]  Anirban Das,et al.  Galactic positron excess from selectively enhanced dark matter annihilation , 2019, 1911.03488.

[17]  C. Heymans,et al.  KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs , 2019, Astronomy & Astrophysics.

[18]  T. Jeltema,et al.  Updated constraints on asteroid-mass primordial black holes as dark matter , 2019, Physical Review D.

[19]  F. Beutler,et al.  The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure , 2019, Journal of Cosmology and Astroparticle Physics.

[20]  Koji Ishiwata,et al.  Probing heavy dark matter decays with multi-messenger astrophysical data , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  S. Nadathur,et al.  Constraints on decaying dark matter from weak lensing and cluster counts , 2019, Journal of Cosmology and Astroparticle Physics.

[22]  Tanvi Karwal,et al.  Alleviating the H0 and σ8 anomalies with a decaying dark matter model , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  B. Safdi,et al.  The dark matter interpretation of the 3.5-keV line is inconsistent with blank-sky observations , 2018, Science.

[24]  S. Koushiappas,et al.  CMB constraints on late-universe decaying dark matter as a solution to the H0 tension , 2020 .

[25]  A. Riess The expansion of the Universe is faster than expected , 2020, 2001.03624.

[26]  J. Chluba,et al.  Updated fundamental constant constraints from Planck 2018 data and possible relations to the Hubble tension , 2019, 1912.03986.

[27]  J. Dunkley,et al.  Data compression in cosmology: A compressed likelihood for Planck data , 2019, Physical Review D.

[28]  A. Melchiorri,et al.  Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions , 2019 .

[29]  L. Verde,et al.  Tensions between the early and late Universe , 2019, Nature Astronomy.

[30]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[31]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  J. Lesgourgues,et al.  Constraining Dark Matter-Dark Radiation interactions with CMB, BAO, and Lyman-α , 2019, Journal of Cosmology and Astroparticle Physics.

[33]  Ranjan Laha Primordial black holes as dark matter candidate are severely constrained by the Galactic Center 511 keV gamma-ray line , 2019 .

[34]  C. Hirata,et al.  Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates , 2019, Journal of Cosmology and Astroparticle Physics.

[35]  C. Heymans,et al.  On the road to per cent accuracy – II. Calibration of the non-linear matter power spectrum for arbitrary cosmologies , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  Wayne Hu,et al.  Acoustic dark energy: Potential conversion of the Hubble tension , 2019, Physical Review D.

[37]  Will Handley,et al.  Anesthetic: Nested Sampling Visualisation , 2019, J. Open Source Softw..

[38]  S. Hannestad,et al.  Fully relativistic treatment of decaying cold dark matter in N-body simulations , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[40]  A. Loeb,et al.  Late universe decaying dark matter can relieve the H_0 tension. , 2019, 1903.06220.

[41]  R. Sagdeev,et al.  Towards Understanding the Origin of Cosmic-Ray Electrons , 2019, Physical Review Letters.

[42]  Will Handley,et al.  Quantifying tension: interpreting the DES evidence ratio , 2019 .

[43]  Y. Farzan,et al.  Dark matter decaying into millicharged particles as a solution to AMS-02 positron excess , 2019, Journal of Cosmology and Astroparticle Physics.

[44]  C. Heymans,et al.  On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  D. Gerdes,et al.  More out of less: an excess integrated Sachs–Wolfe signal from supervoids mapped out by the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  Tristan L. Smith,et al.  Early Dark Energy can Resolve the Hubble Tension. , 2018, Physical review letters.

[47]  B. Yanny,et al.  Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing , 2018, Physical Review D.

[48]  Wayne Hu,et al.  Concordance and discordance in cosmology , 2018, Physical Review D.

[49]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[50]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[51]  Eleonora Di Valentino,et al.  Exploring the Tension between Current Cosmic Microwave Background and Cosmic Shear Data , 2018, Symmetry.

[52]  Suresh Kumar,et al.  Cosmological bounds on dark matter-photon coupling , 2018, Physical Review D.

[53]  T. Bringmann,et al.  Converting nonrelativistic dark matter to radiation , 2018, Physical Review D.

[54]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[55]  Stefano Casertano,et al.  A Near-infrared Period–Luminosity Relation for Miras in NGC 4258, an Anchor for a New Distance Ladder , 2018, 1801.02711.

[56]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations , 2017, Monthly Notices of the Royal Astronomical Society.

[57]  J. Garc'ia-Bellido,et al.  Seven hints for primordial black hole dark matter , 2017, Physics of the Dark Universe.

[58]  M. Valli,et al.  Dark matter self-interactions from the internal dynamics of dwarf spheroidals , 2017, Nature Astronomy.

[59]  E. Hivon,et al.  Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. , 2017, 1710.02559.

[60]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[61]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[62]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[63]  Weikang Lin,et al.  Cosmological discordances II: Hubble constant, Planck and large-scale-structure data sets , 2017, 1708.09813.

[64]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[65]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[66]  S. Tulin,et al.  Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.

[67]  K. Abazajian Sterile neutrinos in cosmology , 2017, 1705.01837.

[68]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[69]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[70]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[71]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[72]  J. Lesgourgues,et al.  A fresh look at linear cosmological constraints on a decaying Dark Matter component , 2016, 1606.02073.

[73]  Ariel G. S'anchez,et al.  Validating estimates of the growth rate of structure with modified gravity simulations , 2016, 1605.03965.

[74]  C. Heymans,et al.  Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces , 2016, 1602.02154.

[75]  N. Fornengo,et al.  Constraints on the coupling between dark energy and dark matter from CMB data , 2016, 1602.01765.

[76]  Carlos S. Frenk,et al.  The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..

[77]  C. Frenk,et al.  Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy , 2015, 1509.04308.

[78]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[79]  S. Nadathur,et al.  Decaying dark matter and the tension in σ8 , 2015, 1505.05511.

[80]  M. Schmaltz,et al.  Non-Abelian dark matter and dark radiation , 2015, 1505.03542.

[81]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[82]  B. Dutta,et al.  Dark Matter from Late Invisible Decays to/of Gravitinos , 2014, 1412.4391.

[83]  Michael Habeck,et al.  Bayesian evidence and model selection , 2014, Digit. Signal Process..

[84]  A. Kosowsky,et al.  Gaussian approximation of peak values in the integrated Sachs-Wolfe effect , 2014, 1410.6138.

[85]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[86]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[87]  W. Percival,et al.  The clustering of the SDSS DR 7 main Galaxy sample – I . A 4 per cent distance measure at z = 0 , 2015 .

[88]  S. Koushiappas,et al.  Dark matter with two- and many-body decays and supernovae type Ia , 2014, 1410.0683.

[89]  J. Lesgourgues,et al.  Strongest model-independent bound on the lifetime of Dark Matter , 2014, 1407.2418.

[90]  A. Peter,et al.  Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes , 2014, 1406.0527.

[91]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[92]  N. Sugiyama,et al.  Evolution of perturbations and cosmological constraints in decaying dark matter models with arbitrary decay mass products , 2014, 1402.2972.

[93]  K. Koyama,et al.  Beyond consistency test of gravity with redshift-space distortions at quasilinear scales , 2013, 1309.6783.

[94]  Antony Lewis CAMB Notes , 2014 .

[95]  R. Croft,et al.  Lyman- α forest constraints on decaying dark matter , 2013, 1309.7354.

[96]  F. Takahashi,et al.  Dark radiation and dark matter in large volume compactifications , 2012, 1208.3563.

[97]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[98]  Matthew Colless,et al.  The 6dF Galaxy Survey: z≈ 0 measurements of the growth rate and σ8: 6dFGS: z≈ 0 measurements of fσ8 and σ8 , 2012 .

[99]  E. Moulin,et al.  Gamma ray constraints on decaying dark matter , 2012, 1205.5283.

[100]  A. Moss,et al.  Origin of ΔNeff as a result of an interaction between dark radiation and dark matter , 2012, 1205.0553.

[101]  Anthony Challinor,et al.  CMB power spectrum parameter degeneracies in the era of precision cosmology , 2012, 1201.3654.

[102]  A. Zentner,et al.  Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys , 2012, 1201.2426.

[103]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[104]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[105]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.

[106]  A. Zentner,et al.  Weak Gravitational Lensing as a Method to Constrain Unstable Dark Matter , 2010, 1011.2774.

[107]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[108]  M. Pospelov,et al.  R-parity preserving super-WIMP decays , 2008, 0812.0432.

[109]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[110]  C. Robert,et al.  Harold Jeffreys’s Theory of Probability Revisited , 2008, 0804.3173.

[111]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[112]  M. Oguri,et al.  Constraints from the Wilkinson microwave anisotropy probe on decaying cold dark matter. , 2004, Physical review letters.

[113]  K. Kotake,et al.  Decaying Cold Dark Matter and the Evolution of the Cluster Abundance , 2003, astro-ph/0306020.

[114]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[115]  A. Coley Scalar Tensor Theories of Gravity , 2003 .

[116]  K. Jedamzik Primordial Black Holes as Dark Matter , 2001 .

[117]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[118]  Terry Elliott,et al.  The Next-To -Minimal Supersymmetric Standard Model , 1995 .

[119]  A. Doroshkevich,et al.  Large-scale structure of the universe in unstable dark matter models , 1989 .

[120]  A V Hershey,et al.  Computation of Special Functions , 1978 .