Molecular plasmonics: light meets molecules at the nanoscale

Certain metal nanoparticles exhibit the effect of localized surface plasmon resonance when interacting with light, based on collective oscillations of their conduction electrons. The interaction of this effect with molecules is of great interest for a variety of research disciplines, both in optics and in the life sciences. This paper attempts to describe and structure this emerging field of molecular plasmonics, situated between the molecular world and plasmonic effects in metal nanostructures, and demonstrates the potential of these developments for a variety of applications.

[1]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[2]  F. Hubenthal Nanoparticles and their tailoring with laser light , 2009 .

[3]  W. Fritzsche,et al.  Electrical Classification of the Concentration of Bioconjugated Metal Colloids after Surface Adsorption and Silver Enhancement , 2001 .

[4]  Christian Leiterer,et al.  Optical properties of individual silicon nanowires for photonic devices. , 2010, ACS nano.

[5]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[6]  Z. Shao,et al.  Cryo atomic force microscopy: a new approach for biological imaging at high resolution. , 1995, Biochemistry.

[7]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[9]  W. Fritzsche,et al.  Preparation and Optical Characterization of Core–Shell Bimetal Nanoparticles , 2006 .

[10]  G. Danscher Localization of gold in biological tissue , 1981, Histochemistry.

[11]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[12]  K. König,et al.  Optically controlled thermal management on the nanometer length scale , 2008, Nanotechnology.

[13]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .

[14]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[15]  Aaron Peled,et al.  Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review , 1998 .

[16]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[17]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[18]  Wolfgang Fritzsche,et al.  Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis , 2011 .

[19]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[20]  J. Köhler,et al.  DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. , 2001, Nucleic acids research.

[21]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[22]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[23]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[24]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[25]  C. Biskup,et al.  Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture , 2010, Nanotechnology.

[26]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[27]  Matthew Tirrell,et al.  Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates. , 2009, ACS nano.

[28]  Wolfgang Fritzsche,et al.  Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[29]  J. Köhler,et al.  Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization , 2009 .

[30]  G. Seifert,et al.  Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses , 2001 .

[31]  David A. Schultz,et al.  Single-target molecule detection with nonbleaching multicolor optical immunolabels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Seiichiro Koda,et al.  Size reduction of gold particles in aqueous solution by pulsed laser irradiation , 1998 .

[33]  Alexey Bezryadin,et al.  Electrostatic trapping of single conducting nanoparticles between nanoelectrodes , 1997 .

[34]  H. Wolf,et al.  Nanoparticle printing with single-particle resolution. , 2007, Nature nanotechnology.

[35]  Kay Schuster,et al.  Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers , 2010, Small.

[36]  Sebastian Schlücker,et al.  SERS microscopy: nanoparticle probes and biomedical applications. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  M. Textor,et al.  Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces. , 2010, Chimia.

[38]  J. Köhler,et al.  Gold‐silver and silver‐silver nanoparticle constructs based on DNA hybridization of thiol‐ and amino‐functionalized oligonucleotides , 2008, Journal of biophotonics.

[39]  Dietmar Pum,et al.  Characterization and use of crystalline bacterial cell surface layers , 2001 .

[40]  Volker Deckert,et al.  Perspectives for spatially resolved molecular spectroscopy – Raman on the nanometer scale , 2008, Journal of biophotonics.

[41]  R. Birngruber,et al.  High Precision Cell Surgery with Nanoparticles , 2002 .

[42]  W. Fritzsche,et al.  Plasmonic nanofabrication by long-range excitation transfer via DNA nanowire. , 2011, Nano letters.

[43]  J. Köhler,et al.  In-situ formation of Ag-containing nanoparticles in thin polymer films , 1998 .

[44]  Hiroshi Masuhara,et al.  Laser manipulation and fixation of single gold nanoparticles in solution at room temperature , 2002 .

[45]  S. L. Westcott,et al.  Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. , 2000, Journal of biomedical materials research.

[46]  Antonio Turiel,et al.  Nanoparticle-mediated local and remote manipulation of protein aggregation. , 2006, Nano letters.

[47]  Andrea Csáki,et al.  DNA-based Molecular Nanotechnology , 2002 .

[48]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[49]  Joachim P. Spatz,et al.  Gold nanoparticles in micellar poly(styrene)‐b‐poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films , 1996 .

[50]  Ralph G. Nuzzo,et al.  ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES , 1983 .

[51]  Paul Mulvaney,et al.  Preparation of ordered colloid monolayers by electrophoretic deposition , 1993 .

[52]  W. Fritzsche,et al.  Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth , 2007 .

[53]  Synthesis of a quantum dot superlattice using molecularly linked metal clusters , 1995 .

[54]  J. Köhler,et al.  Chip-based optical detection of DNA hybridization by means of nanobead labeling. , 2000, Analytical chemistry.

[55]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[56]  H. Siedentopf,et al.  Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser , 1902 .

[57]  Karsten König,et al.  A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. , 2007, Nano letters.

[58]  Luke P. Lee,et al.  Remote optical switch for localized and selective control of gene interference. , 2009, Nano letters.

[59]  C. Mirkin,et al.  A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. , 2007, Angewandte Chemie.

[60]  P. Kaplanek,et al.  The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement , 2003, Nanotechnology.

[61]  Mark T. Swihart,et al.  Vapor-phase synthesis of nanoparticles , 2003 .