Recursive Bayesian estimation: bearings-only applications

Recursive Bayesian estimation methods are applied to several angle-only applications. Air-to-air passive ranging, in addition to an air-to-sea application with terrain induced constraints, is discussed. The incorporation of terrain information improves estimation performance. The bearings-only problem is also discussed using experimental data from a torpedo, i.e. sea-to-sea with a passive sonar sensor. The Bayesian estimation problem is solved using the particle filter and the marginalised particle filter. For comparison, a filter bank method using range parameterised extended Kalman filters is used.

[1]  V. Aidala,et al.  Utilization of modified polar coordinates for bearings-only tracking , 1983 .

[2]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[3]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[4]  Fredrik Gustafsson,et al.  Range estimation using angle-only target tracking with particle filters , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[7]  David V. Stallard,et al.  Angle-only tracking filter in modified spherical coordinates , 1991 .

[8]  Rickard Karlsson,et al.  Particle filtering for positioning and tracking applications , 2005 .

[9]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[10]  Marc-Alain Simard,et al.  Central level fusion of radar and IRST contacts and the choice of coordinate system , 1993, Defense, Security, and Sensing.

[11]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[12]  F. Gustafsson,et al.  Complexity analysis of the marginalized particle filter , 2005, IEEE Transactions on Signal Processing.

[13]  P. Robinson,et al.  Modified spherical coordinates for radar , 1994 .

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[17]  P. Nordlund Sequential Monte Carlo Filters and Integrated Navigation , 2002 .

[18]  A. Holtsberg,et al.  Estimation and confidence in bearings only tracking , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[19]  Neil J. Gordon,et al.  Littoral tracking using particle filter , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[20]  Rickard Karlsson,et al.  Simulation Based Methods for Target Tracking , 2002 .

[21]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[22]  N. Peach,et al.  Bearings-only tracking using a set of range-parameterised extended Kalman filters , 1995 .

[23]  Anders Holtsberg A Statistical Analysis of Bearings-Only Tracking , 1992 .

[24]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[25]  Branko Ristic,et al.  Comparison of the particle filter with range-parameterized and modified polar EKFs for angle-only tracking , 2000, SPIE Defense + Commercial Sensing.

[26]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[27]  Robin J. Evans,et al.  Comparison of suboptimal strategies for optimal own-ship maneuvers in bearings-only tracking , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[28]  X. Rong Li,et al.  Survey of maneuvering target tracking: dynamic models , 2000, SPIE Defense + Commercial Sensing.

[29]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[30]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[31]  Branko Ristic,et al.  Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters , 2004, EURASIP J. Adv. Signal Process..

[32]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[33]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[34]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[35]  Fredrik Gustafsson,et al.  Adaptive Filtering and Change Detection: Gustafsson: Adaptive , 2001 .

[36]  Robin J. Evans,et al.  An information theoretic approach to observer path design for bearings-only tracking , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[37]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[38]  T. R. Kronhamn,et al.  Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive ownship motion control , 1998 .

[39]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .