Single isocenter stereotactic radiosurgery for patients with multiple brain metastases: dosimetric comparison of VMAT and a dedicated DCAT planning tool

[1]  F. Alongi,et al.  Linac-based radiosurgery for multiple brain metastases: Comparison between two mono-isocenter techniques with multiple non-coplanar arcs. , 2019, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  A. Beltramello,et al.  First experience and clinical results using a new non-coplanar mono-isocenter technique (HyperArc™) for Linac-based VMAT radiosurgery in brain metastases , 2018, Journal of Cancer Research and Clinical Oncology.

[3]  P. Kupelian,et al.  Cost-effectiveness of Linac-based single-isocenter non-coplanar technique (HyperArcTM) for brain metastases radiosurgery , 2018, Clinical & Experimental Metastasis.

[4]  F. Alongi,et al.  Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique , 2018, Radiation oncology.

[5]  S. Ohira,et al.  HyperArc VMAT planning for single and multiple brain metastases stereotactic radiosurgery: a new treatment planning approach , 2018, Radiation oncology.

[6]  Niko Papanikolaou,et al.  A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases , 2017, Technology in cancer research & treatment.

[7]  A. Akabane,et al.  A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination Scores. , 2017, International journal of radiation oncology, biology, physics.

[8]  Alexander Radbruch,et al.  Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO) , 2017, Neuro-oncology.

[9]  F. Lagerwaard,et al.  Isotoxic radiosurgery planning for brain metastases. , 2016, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  D. Verellen,et al.  Evaluation of a dedicated brain metastases treatment planning optimization for radiosurgery: a new treatment paradigm? , 2016, Radiation oncology.

[11]  P. Fenoglietto,et al.  Comparison of volumetric-modulated arc therapy and dynamic conformal arc treatment planning for cranial stereotactic radiosurgery. , 2016, Journal of applied clinical medical physics.

[12]  Eric Achten,et al.  Optimal number of atlases and label fusion for automatic multi-atlas-based brachial plexus contouring in radiotherapy treatment planning , 2016, Radiation Oncology.

[13]  T. Nariai,et al.  Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2-9 versus 10 or more tumors. , 2014, Journal of neurosurgery.

[14]  B. Guthrie,et al.  Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. , 2014, Neurosurgery.

[15]  Jinkoo Kim,et al.  Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA). , 2014, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[16]  M. Ruge,et al.  Stereotactic radiosurgery for treatment of brain metastases , 2014, Strahlentherapie und Onkologie.

[17]  Satoshi Suzuki,et al.  Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. , 2014, The Lancet. Oncology.

[18]  A. Bozzao,et al.  Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis , 2011, Radiation oncology.

[19]  R. Warnick,et al.  Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. , 2010, International journal of radiation oncology, biology, physics.

[20]  B. Salter,et al.  Conformity of LINAC-based stereotactic radiosurgery using dynamic conformal arcs and micro-multileaf collimator. , 2009, International journal of radiation oncology, biology, physics.

[21]  B. Lippitz,et al.  A simple dose gradient measurement tool to complement the conformity index. , 2006, Journal of neurosurgery.

[22]  J. Ruben,et al.  Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. , 2006, International journal of radiation oncology, biology, physics.

[23]  I. Paddick A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. , 2000, Journal of neurosurgery.

[24]  I. Paddick,et al.  A simple scoring ratio to index the conformity of radiosurgical treatment plans , 2001 .

[25]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[26]  J. Marks,et al.  Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. , 1981, International journal of radiation oncology, biology, physics.

[27]  Jenghwa Chang,et al.  Restricted single isocenter for multiple targets dynamic conformal arc (RSIMT DCA) technique for brain stereotactic radiosurgery (SRS) planning. , 2018, Journal of radiosurgery and SBRT.

[28]  Kocher,et al.  Stereotactic radiosurgery for treatment of brain metastases , 2014, Strahlentherapie und Onkologie.

[29]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..