On the mean square weighted L 2 discrepancy of randomized digital ( t , m , s )-nets over Z
暂无分享,去创建一个
[1] H. Niederreiter,et al. Constructions of digital nets , 2002 .
[2] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[3] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[4] Wolfgang Ch. Schmid,et al. Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .
[5] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[6] William W. L. Chen. On irregularities of distribution. , 1980 .
[7] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[8] Friedrich Pillichshammer,et al. Bounds for the weighted Lp discrepancy and tractability of integration , 2003, J. Complex..
[9] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[10] Friedrich Pillichshammer,et al. Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .
[11] K. F. Roth,et al. On irregularities of distribution IV , 1979 .
[12] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[13] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[14] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[15] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[16] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[17] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[18] H. Niederreiter,et al. Digital Nets, Duality, and Algebraic Curves , 2004 .
[19] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[20] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[21] R. L. Graham. A Note on Irregularities of Distribution , 2013, Integers.
[22] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[23] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[24] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[25] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .
[26] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[27] Friedrich Pillichshammer. Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .