On the mean square weighted L 2 discrepancy of randomized digital ( t , m , s )-nets over Z

∆(t1, . . . , ts) = AN ([0, t1)× · · · × [0, ts)) N − t1 · · · ts, where 0 ≤ tj ≤ 1 and AN ([0, t1)×· · ·× [0, ts)) denotes the number of indices n with xn ∈ [0, t1)× · · · × [0, ts). The discrepancy function measures the difference of the portion of points in an axis parallel box containing the origin and the volume of this box. Hence it is a measure of the irregularity of distribution of a point set in [0, 1)s. There are of course other functions which serve a comparable purpose, though this function has drawn a great deal of attention as various connections with applications have been pointed out, notably in numerical integration of functions (see for example [19, 29]). Further, we can use different norms of the discrepancy function, again yielding different quality measures. Amongst those norms especially the L2 norm and the L∞ norm are of considerable interest and have been studied extensively (see for example [19, 29]). In the following we introduce some notation and define the weighted L2 discrepancy of a point set, which will be the focus of this paper. Let D = {1, . . . , s}. For u ⊆ D let γu be a non-negative real number, |u| the cardinality of u and for a vector x ∈ [0, 1)s let xu denote the vector from

[1]  H. Niederreiter,et al.  Constructions of digital nets , 2002 .

[2]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[3]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[4]  Wolfgang Ch. Schmid,et al.  Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .

[5]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[6]  William W. L. Chen On irregularities of distribution. , 1980 .

[7]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[8]  Friedrich Pillichshammer,et al.  Bounds for the weighted Lp discrepancy and tractability of integration , 2003, J. Complex..

[9]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[10]  Friedrich Pillichshammer,et al.  Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .

[11]  K. F. Roth,et al.  On irregularities of distribution IV , 1979 .

[12]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[13]  M. Skriganov,et al.  Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .

[14]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[15]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[16]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[17]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[18]  H. Niederreiter,et al.  Digital Nets, Duality, and Algebraic Curves , 2004 .

[19]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[20]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[21]  R. L. Graham A Note on Irregularities of Distribution , 2013, Integers.

[22]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[23]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[24]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[25]  H. Niederreiter,et al.  Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .

[26]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[27]  Friedrich Pillichshammer Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .