Superresolution of Fourier transform spectroscopy data by the maximum entropy method.

The maximum entropy method (MEM) is applied to the interferogram data obtained using the technique of Fourier transform spectroscopy for estimating its spectrum with a resolution far exceeding the value set by the spectrometer. For emission line data, the MEM process is directly used with the interferogram data in place of the regular Fourier transformation process required in Fourier transform spectroscopy. It produces a spectral estimate with an enhanced resolution. For absorption data with a broad background spectrum, the method is applied to a modified interferogram which corresponds to the Fourier transform of the absorptance spectrum. Two results are presented to demonstrate the power of the technique: for the visible emission spectrum of a spectral calibration lamp and for the infrared chloroform absorption spectrum. Included in the paper is a discussion of the problems associated with practical use of the MEM.