An Iterative Method for the Approximation of Fibers in Slow-Fast Systems
暂无分享,去创建一个
[1] F. Takens. Chapter 3 – Local Invariant Manifolds and Normal Forms , 2010 .
[2] Peter W. Bates,et al. Approximately invariant manifolds and global dynamics of spike states , 2008 .
[3] G. Iooss,et al. Approximate invariant manifolds up to exponentially small terms , 2010 .
[4] Edward N. Lorenz,et al. On the Nonexistence of a Slow Manifold , 1986 .
[5] A. Neishtadt. The separation of motions in systems with rapidly rotating phase , 1984 .
[6] Michael J. Davis,et al. Geometrical Simplification of Complex Kinetic Systems , 2001 .
[7] Anthony J. Roberts,et al. Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[8] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[9] S. Reich,et al. Adiabatic Invariance and Applications: From Molecular Dynamics to Numerical Weather Prediction , 2004 .
[10] Inertial manifolds , 1990 .
[11] James Murdock,et al. Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .
[12] Hans G. Kaper,et al. Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .
[13] S. H. Lam,et al. Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .
[14] Michael Reinhard,et al. Physical Chemistry A Molecular Approach , 2016 .
[15] V. Gelfreich,et al. Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system , 2003 .
[16] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[17] R. MacKay,et al. Energy localisation and transfer , 2004 .
[18] K. U. Kristiansen,et al. Exponential estimates of slow manifolds , 2012 .
[19] J. Laskar,et al. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.
[20] Anthony J. Roberts,et al. Computer algebra derives correct initial conditions for low-dimensional dynamical models , 1999, chao-dyn/9901010.
[21] Mauro Valorani,et al. An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..
[22] Simon J. Fraser,et al. The steady state and equilibrium approximations: A geometrical picture , 1988 .
[23] Marina Bosch,et al. Applications Of Centre Manifold Theory , 2016 .
[24] U. Maas,et al. A general algorithm for improving ILDMs , 2002 .
[25] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[26] V. Gelfreich,et al. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .
[27] Hans G. Kaper,et al. Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..
[28] Ioannis G. Kevrekidis,et al. Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..
[29] D. Turaev,et al. The symmetric parabolic resonance , 2010 .
[30] M. Haragus,et al. Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .
[31] K. U. Kristiansen,et al. Exponential estimates of symplectic slow manifolds , 2012, 1208.4219.
[32] Edward N. Lorenz,et al. The Slow Manifold—What Is It? , 1992 .
[33] Stephen M. Cox,et al. Initial conditions for models of dynamical systems , 1995 .
[34] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[35] J. Pöschel,et al. Inverse spectral theory , 1986 .
[36] Enrique Peacock-López,et al. Complex dynamics in a cross-catalytic self-replication mechanism. , 2007, The Journal of chemical physics.
[37] J. Laskar. Large-scale chaos in the solar system. , 1994 .
[38] R. Mañé. Persistent manifolds are normally hyperbolic , 1978 .
[39] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[40] Ulrich Maas,et al. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .
[41] A. Neishtadt. On the accuracy of conservation of the adiabatic invariant , 1981 .
[42] C. Chicone. Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.
[43] K. Uldall Kristiansen,et al. The Persistence of a Slow Manifold with Bifurcation , 2012, SIAM J. Appl. Dyn. Syst..
[44] Marc R. Roussel,et al. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .
[45] K. Uldall Kristiansen,et al. A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..
[46] S. H. Lam,et al. Understanding complex chemical kinetics with computational singular perturbation , 1989 .
[47] M. Roussel. Forced‐convergence iterative schemes for the approximation of invariant manifolds , 1997 .
[48] I. G. Kevrekidis,et al. Esaim: Mathematical Modelling and Numerical Analysis Analysis of the Accuracy and Convergence of Equation-free Projection to a Slow Manifold , 2022 .
[49] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[50] J. Pöschel,et al. A lecture on the classical KAM theorem , 2009, 0908.2234.
[51] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[52] M. Brøns. Canard explosion of limit cycles in templator models of self-replication mechanisms. , 2011, The Journal of chemical physics.
[53] S. H. Lam,et al. Using CSP to Understand Complex Chemical Kinetics , 1993 .
[54] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .