An Iterative Method for the Approximation of Fibers in Slow-Fast Systems

In this paper we extend a method for iteratively improving slow manifolds so that it also can be used to approximate the fiber directions. The extended method is applied to general finite-dimensional real analytic systems where we obtain exponential estimates of the tangent spaces to the fibers. The method is demonstrated on the Michaelis--Menten--Henri model and the Lindemann mechanism. The latter example also serves to demonstrate the method on a slow-fast system in nonstandard slow-fast form. Finally, we extend the method further so that it also approximates the curvature of the fibers.

[1]  F. Takens Chapter 3 – Local Invariant Manifolds and Normal Forms , 2010 .

[2]  Peter W. Bates,et al.  Approximately invariant manifolds and global dynamics of spike states , 2008 .

[3]  G. Iooss,et al.  Approximate invariant manifolds up to exponentially small terms , 2010 .

[4]  Edward N. Lorenz,et al.  On the Nonexistence of a Slow Manifold , 1986 .

[5]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[6]  Michael J. Davis,et al.  Geometrical Simplification of Complex Kinetic Systems , 2001 .

[7]  Anthony J. Roberts,et al.  Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[9]  S. Reich,et al.  Adiabatic Invariance and Applications: From Molecular Dynamics to Numerical Weather Prediction , 2004 .

[10]  Inertial manifolds , 1990 .

[11]  James Murdock,et al.  Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .

[12]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[13]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[14]  Michael Reinhard,et al.  Physical Chemistry A Molecular Approach , 2016 .

[15]  V. Gelfreich,et al.  Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system , 2003 .

[16]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[17]  R. MacKay,et al.  Energy localisation and transfer , 2004 .

[18]  K. U. Kristiansen,et al.  Exponential estimates of slow manifolds , 2012 .

[19]  J. Laskar,et al.  Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.

[20]  Anthony J. Roberts,et al.  Computer algebra derives correct initial conditions for low-dimensional dynamical models , 1999, chao-dyn/9901010.

[21]  Mauro Valorani,et al.  An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..

[22]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[23]  Marina Bosch,et al.  Applications Of Centre Manifold Theory , 2016 .

[24]  U. Maas,et al.  A general algorithm for improving ILDMs , 2002 .

[25]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[26]  V. Gelfreich,et al.  Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .

[27]  Hans G. Kaper,et al.  Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..

[28]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[29]  D. Turaev,et al.  The symmetric parabolic resonance , 2010 .

[30]  M. Haragus,et al.  Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .

[31]  K. U. Kristiansen,et al.  Exponential estimates of symplectic slow manifolds , 2012, 1208.4219.

[32]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[33]  Stephen M. Cox,et al.  Initial conditions for models of dynamical systems , 1995 .

[34]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[35]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[36]  Enrique Peacock-López,et al.  Complex dynamics in a cross-catalytic self-replication mechanism. , 2007, The Journal of chemical physics.

[37]  J. Laskar Large-scale chaos in the solar system. , 1994 .

[38]  R. Mañé Persistent manifolds are normally hyperbolic , 1978 .

[39]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[40]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[41]  A. Neishtadt On the accuracy of conservation of the adiabatic invariant , 1981 .

[42]  C. Chicone Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.

[43]  K. Uldall Kristiansen,et al.  The Persistence of a Slow Manifold with Bifurcation , 2012, SIAM J. Appl. Dyn. Syst..

[44]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[45]  K. Uldall Kristiansen,et al.  A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..

[46]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[47]  M. Roussel Forced‐convergence iterative schemes for the approximation of invariant manifolds , 1997 .

[48]  I. G. Kevrekidis,et al.  Esaim: Mathematical Modelling and Numerical Analysis Analysis of the Accuracy and Convergence of Equation-free Projection to a Slow Manifold , 2022 .

[49]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[50]  J. Pöschel,et al.  A lecture on the classical KAM theorem , 2009, 0908.2234.

[51]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[52]  M. Brøns Canard explosion of limit cycles in templator models of self-replication mechanisms. , 2011, The Journal of chemical physics.

[53]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics , 1993 .

[54]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .