A Silk Fibroin Bio-Transient Solution Processable Memristor

[1]  Yoshio Nishi,et al.  Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. , 2017, Nanoscale.

[2]  A. Kilcoyne,et al.  Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors. , 2016, ACS nano.

[3]  Carlos Frederico de Oliveira Graeff,et al.  Resistive switching controlled by the hydration level in thin films of the biopigment eumelanin , 2016 .

[4]  Wei D. Lu,et al.  Nanoscale electrochemistry using dielectric thin films as solid electrolytes. , 2016, Nanoscale.

[5]  Bowen Zhu,et al.  Silk Fibroin for Flexible Electronic Devices , 2016, Advanced materials.

[6]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[7]  Y. Hao,et al.  Physically Transient Resistive Switching Memory Based on Silk Protein. , 2016, Small.

[8]  Xiaoping Li,et al.  Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk , 2016, Journal of Materials Science: Materials in Electronics.

[9]  Saulius Juodkazis,et al.  Silk fibroin as a water-soluble bio-resist and its thermal properties , 2016 .

[10]  Huanyu Cheng,et al.  Bioresorbable silicon electronic sensors for the brain , 2016, Nature.

[11]  H. Yu,et al.  Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film , 2015, Scientific Reports.

[12]  J. Rogers,et al.  Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement , 2014, Proceedings of the National Academy of Sciences.

[13]  David L Kaplan,et al.  Silk-based biomaterials for sustained drug delivery. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Rainer Waser,et al.  Impact of the Counter‐Electrode Material on Redox Processes in Resistive Switching Memories , 2014 .

[15]  R. Waser,et al.  Inside Back Cover: Impact of the Counter‐Electrode Material on Redox Processes in Resistive Switching Memories (ChemElectroChem 8/2014) , 2014 .

[16]  T. Nakaoki,et al.  High‐tensile‐strength polyvinyl alcohol films prepared from freeze/thaw cycled gels , 2014 .

[17]  S. Jun,et al.  In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films , 2014 .

[18]  Xiaodong Chen,et al.  Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory , 2013, Advanced materials.

[19]  Writam Banerjee,et al.  Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix , 2013, Nanotechnology.

[20]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[21]  Chang Jung Kim,et al.  Physical electro-thermal model of resistive switching in bi-layered resistance-change memory , 2013, Scientific Reports.

[22]  Ville Ellä,et al.  Biodegradable encapsulation for inductively measured resonance circuit , 2012, 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE).

[23]  M. K. Hota,et al.  A Natural Silk Fibroin Protein‐Based Transparent Bio‐Memristor , 2012 .

[24]  R. Waser,et al.  Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. , 2012, Nanoscale.

[25]  H. Yu,et al.  Investigation of Nonvolatile Memory Effect of Organic Thin-Film Transistors with Triple Dielectric Layers , 2012 .

[26]  Michael C. McAlpine,et al.  Silk‐Based Conformal, Adhesive, Edible Food Sensors , 2012, Advanced materials.

[27]  R. Waser,et al.  Effects of Moisture on the Switching Characteristics of Oxide‐Based, Gapless‐Type Atomic Switches , 2012 .

[28]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[29]  Rainer Waser,et al.  Redox processes in silicon dioxide thin films using copper microelectrodes , 2011 .

[30]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[31]  David L Kaplan,et al.  Regulation of silk material structure by temperature-controlled water vapor annealing. , 2011, Biomacromolecules.

[32]  Z. Shao,et al.  Enhancing the toughness of regenerated silk fibroin film through uniaxial extension. , 2010, Biomacromolecules.

[33]  D. Kaplan,et al.  Effect of hydration on silk film material properties. , 2010, Macromolecular bioscience.

[34]  David L Kaplan,et al.  Water-insoluble silk films with silk I structure. , 2010, Acta biomaterialia.

[35]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[36]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[37]  F. Chaubet,et al.  A Novel Cross‐linked Poly(vinyl alcohol) (PVA) for Vascular Grafts , 2008 .

[38]  David L. Kaplan,et al.  Dynamic Protein−Water Relationships during β-Sheet Formation , 2008 .

[39]  David L. Kaplan,et al.  Effect of water on the thermal properties of silk fibroin , 2007 .

[40]  H. Jin,et al.  Electrically conducting electrospun silk membranes fabricated by adsorption of carbon nanotubes , 2007 .

[41]  E. Leiva,et al.  Computer Simulations of Electrochemical Low‐Dimensional Metal Phase Formation , 2007 .

[42]  David L. Kaplan,et al.  Water‐Stable Silk Films with Reduced β‐Sheet Content , 2005 .

[43]  Jianzhong Shao,et al.  Fourier Transform Raman and Fourier Transform Infrared Spectroscopy Studies of Silk Fibroin , 2005 .

[44]  David L Kaplan,et al.  In vitro degradation of silk fibroin. , 2005, Biomaterials.

[45]  S. Hudson,et al.  Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. , 2001, International journal of biological macromolecules.

[46]  G. S. Nadiger,et al.  Crystallinity in silk fibers: Partial acid hydrolysis and related studies , 1980 .

[47]  J. Magoshi,et al.  Physical properties and structure of silk. II. Dynamic mechanical and dielectric properties of silk fibroin , 1975 .

[48]  J. Warwicker The crystal structure of silk fibroin , 1954 .

[49]  R. Waser,et al.  Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems. , 2016, Nature nanotechnology.

[50]  F. Chan,et al.  Detection of necrosis by release of lactate dehydrogenase activity. , 2013, Methods in molecular biology.

[51]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[52]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[53]  F. Baruthio Toxic effects of chromium and its compounds , 2007, Biological Trace Element Research.

[54]  J. Guertin Toxicity and Health Effects of Chromium (All Oxidation States) , 2006 .

[55]  S E Bishara,et al.  Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. , 1993, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[56]  P. Tipler,et al.  Modern Physics , 1976 .