A multi‐scale spectral stochastic method for homogenization of multi‐phase periodic composites with random material properties

In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the microstructural response the scheme benefits from a combination of homogenization theory built into a finite element framework and the spectral representation of uncertainty based on Hermite Chaos where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global (effective) properties is then obtained by averaging the solutions to the forgoing set of local problems over the unit cell. A representative subset of results is compared with the results obtained using Monte Carlo simulation to demonstrate the accuracy of the proposed procedure. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Jacob Fish,et al.  Multiple scale eigendeformation-based reduced order homogenization , 2009 .

[2]  Jacob Fish,et al.  Generalized Mathematical Homogenization: From theory to practice , 2008 .

[3]  Masaru Zako,et al.  Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .

[4]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[5]  Jacob Fish,et al.  Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .

[6]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[7]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[8]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[9]  R. Ghanem,et al.  Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .

[10]  Marcin Kamiński,et al.  Stochastic finite element method homogenization of heat conduction problem in fiber composites , 2001 .

[11]  Michał Kleiber,et al.  Perturbation based stochastic finite element method for homogenization of two-phase elastic composites , 2000 .

[12]  M. Kaminski Homogenization of 1D elastostatics by the stochastic second order approach , 2000 .

[13]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[14]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[15]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[16]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[18]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[19]  Sia Nemat-Nasser,et al.  On composites with periodic structure , 1982 .

[20]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[21]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[22]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[23]  D. V. Widder,et al.  Review: J. A. Shohat and J. D. Tamarkin, The problem of moments , 1945 .

[24]  Masaru Zako,et al.  Influence of Uncertainty in Microscopic Material Property on Homogenized Elastic Property of Unidirectional Fiber Reinforced Composites , 2008 .

[25]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[26]  D. Declercq Apport des polynomes d'hermite a la modelisation non gaussienne et tests statistiques associes , 1998 .

[27]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[28]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[29]  Shizuo Kakutani,et al.  Spectral Analysis of Stationary Gaussian Processes , 1961 .