A multi‐scale spectral stochastic method for homogenization of multi‐phase periodic composites with random material properties
暂无分享,去创建一个
[1] Jacob Fish,et al. Multiple scale eigendeformation-based reduced order homogenization , 2009 .
[2] Jacob Fish,et al. Generalized Mathematical Homogenization: From theory to practice , 2008 .
[3] Masaru Zako,et al. Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .
[4] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[5] Jacob Fish,et al. Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .
[6] Christian Soize,et al. Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .
[7] Roger Ghanem,et al. Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .
[8] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[9] R. Ghanem,et al. Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .
[10] Marcin Kamiński,et al. Stochastic finite element method homogenization of heat conduction problem in fiber composites , 2001 .
[11] Michał Kleiber,et al. Perturbation based stochastic finite element method for homogenization of two-phase elastic composites , 2000 .
[12] M. Kaminski. Homogenization of 1D elastostatics by the stochastic second order approach , 2000 .
[13] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[14] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[15] N. Kikuchi,et al. A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .
[16] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] M. Wolcott. Cellular solids: Structure and properties , 1990 .
[18] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[19] Sia Nemat-Nasser,et al. On composites with periodic structure , 1982 .
[20] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[21] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[22] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[23] D. V. Widder,et al. Review: J. A. Shohat and J. D. Tamarkin, The problem of moments , 1945 .
[24] Masaru Zako,et al. Influence of Uncertainty in Microscopic Material Property on Homogenized Elastic Property of Unidirectional Fiber Reinforced Composites , 2008 .
[25] Pavel Pudil,et al. Introduction to Statistical Pattern Recognition , 2006 .
[26] D. Declercq. Apport des polynomes d'hermite a la modelisation non gaussienne et tests statistiques associes , 1998 .
[27] E. S. Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[28] Stefan Rolewicz,et al. On a problem of moments , 1968 .
[29] Shizuo Kakutani,et al. Spectral Analysis of Stationary Gaussian Processes , 1961 .