Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

Despite tremendous progress in efficiency and stability, perovskite solar cells are still facing the challenge of upscaling. Here we present unique advantages of reactive polyiodide melts for solvent- and adduct-free reactionary fabrication of perovskite films exhibiting excellent quality over large areas. Our method employs a nanoscale layer of metallic Pb coated with stoichiometric amounts of CH3NH3I (MAI) or mixed CsI/MAI/NH2CHNH2I (FAI), subsequently exposed to iodine vapour. The instantly formed MAI3(L) or Cs(MA,FA)I3(L) polyiodide liquid converts the Pb layer into a pure perovskite film without byproducts or unreacted components at nearly room temperature. We demonstrate highly uniform and relatively large area MAPbI3 perovskite films, such as 100 cm2 on glass/fluorine-doped tin oxide (FTO) and 600 cm2 on flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. As a proof-of-concept, we demonstrate solar cells with reverse scan power conversion efficiencies of 16.12% (planar MAPbI3), 17.18% (mesoscopic MAPbI3) and 16.89% (planar Cs0.05MA0.2FA0.75PbI3) in the standard FTO/c(m)-TiO2/perovskite/spiro-OMeTAD/Au architecture.Reactive polyiodide melt-assisted conversion of metallic lead nanolayers into hybrid lead halide films opens a new branch of scalable technologies for perovskite photovoltaics.

[1]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[2]  Y. Qi,et al.  Application of Methylamine Gas in Fabricating Organic–Inorganic Hybrid Perovskite Solar Cells , 2017 .

[3]  Henk J. Bolink,et al.  Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? , 2017 .

[4]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[5]  H. Füllbier,et al.  The structure of room temperature molten polyiodides , 1991 .

[6]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[7]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[8]  Martin A. Green,et al.  Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes , 2018 .

[9]  P. Rieder,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017, 1902.06540.

[10]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[11]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[12]  David Cahen,et al.  Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[13]  S. Pang,et al.  Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement. , 2016, Journal of the American Chemical Society.

[14]  Dane W. deQuilettes,et al.  Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments , 2016 .

[15]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[16]  S. Zakeeruddin,et al.  A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts , 2017 .

[17]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[18]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[19]  Satyajit Gupta,et al.  Metal to Halide Perovskite (HaP): An Alternative Route to HaP Coating, Directly from Pb(0) or Sn(0) Films , 2017 .

[20]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[21]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[22]  Kai Zhu,et al.  Perovskite Solar Cells Shine in the “Valley of the Sun” , 2016 .

[23]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[24]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[25]  N. Park,et al.  Two-step deposition method for high-efficiency perovskite solar cells , 2015 .

[26]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[27]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[28]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[29]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[30]  Yuanyuan Zhou,et al.  Gas-Induced Formation/Transformation of Organic–Inorganic Halide Perovskites , 2017 .

[31]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[32]  Min Ho Lee,et al.  Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating , 2016 .

[33]  T. Murakami,et al.  Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite , 2017, Scientific Reports.

[34]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[35]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[36]  Y. Qi,et al.  Scalable solution coating of the absorber for perovskite solar cells , 2017, Journal of Energy Chemistry.

[37]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[38]  Frederik C. Krebs,et al.  Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes , 2015 .

[39]  Shin Woei Leow,et al.  Over 20% Efficient CIGS–Perovskite Tandem Solar Cells , 2017 .

[40]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[41]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[42]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[43]  S. Pang,et al.  Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization. , 2015, The journal of physical chemistry letters.

[44]  Jun Mei,et al.  Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. , 2015, ACS applied materials & interfaces.

[45]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[46]  M. Grätzel,et al.  Room‐Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low‐Cost Solar Cells , 2017, Advanced materials.

[47]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[48]  Matthew J. Carnie,et al.  One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications , 2017 .

[49]  T. Edvinsson,et al.  Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells , 2018 .

[50]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.