Rational design of the exchange-spring permanent magnet

The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

[1]  Arti Kashyap,et al.  Predicting the Future of Permanent-Magnet Materials , 2013, IEEE Transactions on Magnetics.

[2]  H. Kronmüller,et al.  Nucleation Fields in Periodic Multilayers , 1989 .

[3]  R. Ziff,et al.  Precise determination of the critical percolation threshold for the three- dimensional ''Swiss cheese'' model using a growth algorithm , 2001 .

[4]  C. D. Waard,et al.  Meltspun permanent magnet materials containing Fe3B as the main phase , 1989 .

[5]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[6]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[7]  Ralph Skomski,et al.  Quasicoherent nucleation mode in two-phase nanomagnets , 1999 .

[8]  E. Goto,et al.  Magnetization and Switching Characteristics of Composite Thin Magnetic Films , 1965 .

[9]  Andrei Kirilyuk,et al.  Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys , 2013, Reports on progress in physics. Physical Society.

[10]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[11]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[12]  C. H. Sowers,et al.  EXCHANGE-SPRING BEHAVIOR IN EPITAXIAL HARD/SOFT MAGNETIC BILAYERS , 1998 .

[13]  J. Vermant,et al.  Directed self-assembly of nanoparticles. , 2010, ACS nano.

[14]  J. Liu,et al.  SmCo5∕Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles , 2007 .

[15]  G. Hadjipanayis Nanophase hard magnets , 1999 .

[16]  Alexander K. Buell,et al.  Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. , 2010, Nature nanotechnology.

[17]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[18]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[19]  Satoshi Sugimoto,et al.  Current status and recent topics of rare-earth permanent magnets , 2011 .

[20]  H. Kronmüller,et al.  FUNDAMENTAL MAGNETIZATION PROCESSES IN NANOSCALED COMPOSITE PERMANENT MAGNETS , 1998 .

[21]  T. Ono,et al.  MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field , 2002 .

[22]  G. Hadjipanayis,et al.  Fe-nanoparticle coated anisotropic magnet powders for composite permanent magnets with enhanced properties , 2008 .

[23]  E. Fullerton,et al.  Hard/soft magnetic heterostructures: model exchange-spring magnets , 1999 .

[24]  Ryan,et al.  Micromagnetics of domain walls at surfaces. , 1991, Physical review. B, Condensed matter.

[25]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[26]  Magnetic nanowires as permanent magnet materials , 2007, 0711.1978.

[27]  T. Schrefl,et al.  Micromagnetic study of Bloch-point-mediated vortex core reversal , 2003 .