Dendritic properties of turtle pyramidal neurons.

The six-layered mammalian neocortex evolved from the three-layered paleocortex, which is retained in present-day reptiles such as the turtle. Thus the turtle offers an opportunity to examine which cellular and circuit properties are fundamental to cortical function. We characterized the dendritic properties of pyramidal neurons in different cortical regions of mature turtles, Pseudemys scripta elegans, using whole cell recordings and calcium imaging from the axon, soma, and dendrites in a slice preparation. The firing properties, in response to intrasomatic depolarization, resembled those previously recorded with sharp electrodes in this preparation. Somatic spikes led to active backpropagating high-amplitude dendritic action potentials and intracellular calcium ion concentration ([Ca2+]i) changes at all dendritic locations, suggesting that both backpropagation and dendritic voltage-gated Ca2+ channels are primitive traits. We found no indication that Ca2+ spikes could be evoked in the dendrites, but fast Na+ spikes could be initiated there following intradendritic stimulation. Several lines of evidence indicate that fast, smaller-amplitude somatic spikes ("prepotentials") that are easily recorded in this preparation are generated in the axon. Most synaptically activated [Ca2+]i changes resulted from Ca2+ entry through voltage-gated channels. In some cells synaptic stimulation evoked a delayed Ca2+ wave due to release from internal stores following activation of metabotropic glutamate receptors. With some small differences these properties resemble those of pyramidal neurons in mammalian species. We conclude that spike backpropagation, dendritic Ca2+ channels, and synaptically activated Ca2+ release are primitive and conserved features of cortical pyramidal cells, and therefore likely fundamental to cortical function.

[1]  P. Ulinski,et al.  Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex , 1990, The Journal of comparative neurology.

[2]  K J Staley,et al.  Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. , 1992, Journal of neurophysiology.

[3]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[4]  Alan Roberts,et al.  A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. , 2004, Journal of neurophysiology.

[5]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[6]  Paul A. Rhodes,et al.  Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex , 2001, The Journal of physiology.

[7]  W. N. Ross,et al.  Inositol 1 , 4 , 5-Trisphosphate ( IP 3 )-Mediated Ca 2 1 Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA 1 Pyramidal Neurons , 2000 .

[8]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[9]  Shigeo Watanabe,et al.  Synaptically Activated Ca2+ Waves in Layer 2/3 and Layer 5 Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[10]  S. Antic,et al.  Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons , 2005, The Journal of Membrane Biology.

[11]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[12]  M Steriade,et al.  Cerebral Cortex Advance Access published April 27, 2004 Selective Amplification of Neocortical Neuronal Output by Fast Prepotentials In , 2022 .

[13]  Knut Holthoff,et al.  Dendritic spikes and activity-dependent synaptic plasticity , 2006, Cell and Tissue Research.

[14]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[15]  A. Reiner A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. , 2000, Novartis Foundation symposium.

[16]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Bijoy K. Ghosh,et al.  Modeling and estimation problems in the turtle visual cortex , 2002, IEEE Transactions on Biomedical Engineering.

[18]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[19]  L. M. Smith,et al.  The thalamocortical projection in Pseudemys turtles: A quantitative electron microscopic study , 1980, The Journal of comparative neurology.

[20]  R. Northcutt Evolution of the telencephalon in nonmammals. , 1981, Annual review of neuroscience.

[21]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[22]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[23]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[24]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[25]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  W. C. Hall,et al.  Thalamotelencephalic projections in the turtle (Pseudemys scripta) , 1970, The Journal of comparative neurology.

[27]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[28]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[29]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[30]  B W Connors,et al.  Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Charles M. Gray,et al.  Simulations of Intrinsically Bursting Neocortical Pyramidal Neurons , 1994, Neural Computation.

[32]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[33]  W. N. Ross,et al.  Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  W. N. Ross,et al.  Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons , 2000, The Journal of Neuroscience.

[35]  Pankaj Sah,et al.  Nuclear Calcium Signaling Evoked by Cholinergic Stimulation in Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of Neuroscience.

[36]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[37]  B W Connors,et al.  Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[39]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[40]  W. N. Ross,et al.  High time resolution fluorescence imaging with a CCD camera , 1991, Journal of Neuroscience Methods.

[41]  B. Sakmann,et al.  Dendritic Spikes in Apical Dendrites of Neocortical Layer 2/3 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[42]  A. Goffinet,et al.  The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway , 2000, Trends in Neurosciences.

[43]  Gordon M Shepherd,et al.  Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. , 2002, Journal of neurophysiology.

[44]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[45]  Paul A. Rhodes,et al.  Functional Implications of Active Currents in the Dendrites of Pyramidal Neurons , 1999 .

[46]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[47]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[48]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[49]  R. W. Turner,et al.  Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. , 1987, Journal of neurophysiology.

[50]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[51]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[52]  B. Sakmann,et al.  Patch-Pipette Recordings from the Soma, Dendrites, and Axon of Neurons in Brain Slices , 1995 .

[53]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[54]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[55]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[56]  F. O. Schmitt,et al.  The Organization of the Cerebral Cortex. , 1982 .

[57]  W. N. Ross,et al.  Spatial Segregation and Interaction of Calcium Signalling Mechanisms in Rat Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of physiology.

[58]  G. Stuart,et al.  Backpropagation of Physiological Spike Trains in Neocortical Pyramidal Neurons: Implications for Temporal Coding in Dendrites , 2000, The Journal of Neuroscience.